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(PCA)

Problem 1 (PCA Theory):

Given a dataset X ∈ RD×N (observations as columns), where D is the number of dimensions and N is the
number of observations, a linear transformation using an orthonormal matrix is applied to make a change of basis,
to obtain a (usually) lower-dimensional representation of the dataset denoted by Z̄ ∈ RK×N . Z̄ together with
the basis (and the shift), is then used to reconstruct a compressed version of the data. This can for example be
applied to compress images or visualize high-dimensional data by projecting to a lower dimensional space.

1. We begin by reviewing the steps of applying PCA to a dataset X. Please complete each step below by
providing the appropriate formula to compute the desired quantity.

(a) Define the zero-mean dataset X̄ in terms of the original dataset X. For this purpose, use M =
[x̄, ..., x̄] ∈ RD×N where x̄ is the sample mean.

(b) Define the covariance matrix Σ in terms of the zero-mean dataset X̄.

(c) Write down the eigen decomposition of the covariance matrix Σ, in terms of the eigenvector matrix
U (eigenvectors as columns) and the diagonal matrix of eigenvalues Λ.

(d) Define the dataset in the new basis Z̄ via a transformation of X̄. (Note: Assume we want to keep
only the K dimensions of the transformed dataset and that the eigenvectors in U have already been
sorted according to the corresponding eigenvalues, in decreasing order.)

(e) How can the data (approximation) X̃ be reconstructed?

(f) Prove that the (squared) reconstruction error is the sum of the lowest D − K eigenvalues of the
covariance matrix.

2. Assume we have applied PCA to some dataset (D = 100). We observe the following eigenvalue spectrum
of the covariance matrix of the data. (λi: eigenvalues)
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(a) Is the intrinsic dimensionality of this dataset low or high? Why?

(b) Can this dataset be expressed in few dimensions with low approximation error? Why?

(c) If yes, which dimensionality (approximately) should be chosen for the transformed dataset and why?



3. Assume you have observed 2D data X ∈ R2×N (observations as columns). The first row of X corresponds
to the first dimension x1, the second row corresponds to x2. For each of the three covariance matrices
ΣX below, please choose the iso-line plot (A-E) corresponding to a multivariat gaussian with the given
covariance matrix. (Note the axis labels on the figures)
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4. PCA transforms a dataset X into a dataset Z = A>X by defining a new basis using the eigenvectors of the
covariance matrix ΣX of the dataset X. With this particular choice of a new basis, the covariance matrix
ΣZ of the transformed dataset Z is diagonalized.

(a) Please explain in words, why we desire the covariance matrix of the transformed dataset to be diagonal.

(b) Show that ΣZ = A>ΣXA, i.e., that the covariance matrix ΣZ of the transformed dataset can be
written in terms of the covariance matrix ΣX of the original dataset.

(c) Show that the choice A = U for the PCA transformation matrix, where U is the matrix of eigenvectors
of ΣX = UΛU>, actually diagonalizes the covariance matrix ΣZ of the transformed dataset Z. Use
the fact that the inverse U−1 = U>.

Problem 2 (PCA for Image Analysis):

In this assignment, we apply principal component analysis (PCA) to image analysis, for the particular application
of extracting eigenfaces (set of eigenvectors used extracted from images containing human faces). We begin with
first setting up the environment on your local machine, then we go step by step through the procedure to extract
eigenfaces.

Setup:

• Make sure you have numpy, matplotlib, Pillow and jupyter installed on your system (use pip3

install...)

• Download the face images dataset, as well as the provided Jupyter notebook template from the lecture’s
website
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Step-by-step procedure:

1. Build a matrix collecting all images as its columns

2. Normalize all images by subtracting the mean

3. Perform PCA on the covariance matrix

4. Visualize the 5 first principal components. what is the interpretation of these images?
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