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Problem 1 (Constrained Optimization with Lagrange multipliers):

The method of Lagrange multipliers can be used to find local maxima and minima associated with a function
subject to equality constraints. It is widely applied in several different scientific fields and plays an important role
in a number of key derivations in machine learning.

We are going to use it to provide an alternative derivation of a well-known result in linear algebra: if A is
an n × n real symmetric matrix, then there exists an orthonormal basis of Rn consisting of eigenvectors of
A. Let’s consider the quadratic form f(x) = 〈x,Ax〉 and suppose we want to optimize f on the unit sphere
Sn−1 =

{
x ∈ Rn : ‖x‖2 = 1

}
. That is, with g(x) := ‖x‖2 − 1, the constraint is given by g(x) = 0.

1. Let λ1 = max f |Sn−1 and v1 ∈ Sn−1 a point maximizing f , i.e., λ1 = f (v1). Prove that Av1 = λ1v1.

2. Now, maximize f on the set Sn−2 =
{
x ∈ Sn−1 : 〈x,v1〉 = 0

}
. More specifically, with g(x) as before and

h(x) := 〈x,v1〉, consider g(x) = 0 and h(x) = 0 as the new constraints. Assuming that λ2 = max f |Sn−2

and v2 ∈ Sn−2 is a point maximizing f , prove that Av2 = λ2v2.

Hint: Show that if (x, λ, µ) satisfies  ∇(f − λg − µh)(x) = 0
g(x) = 0
h(x) = 0,

then µ = 0, Ax = λx and λ = f(x).

3. Applying the same rationale as above, prove that Av3 = λ3v3, where λ3 = max f |Sn−3 = f (v3) and
Sn−3 =

{
x ∈ Sn−1 : 〈x,v1〉 = 0, 〈x,v2〉 = 0

}
.

4. By iterating the above procedure, conclude that {vk}nk=1 forms an orthonormal basis of Rn, with Avk =
λkvk, λk = max f |Sn−k = f (vk) , and λ1 ≥ λ2 ≥ · · · ≥ λn.

5. Recap in a few words how the Lagrange multiplier method is used as part of PCA.



Problem 2 (Alternating Least Squares for Collaborative Filtering):

Suppose we have a user-movie rating matrix A ∈ Rm×n which contains the ratings from m users for n movies
on Netflix. Let I contain the indexes of the entries observed in A.

To build a recommender system, we decompose the rating matrix A into a product of two matrices UV,
where U ∈ Rm×k and V ∈ Rk×n are the user and item matrices correspondingly, and the number of factors
k � max(n,m) is relatively small. Let the i-th row of U be u>i (ui ∈ Rk), and the j-th column of V be
vj ∈ Rk. Let Ik denote the k × k identity matrix.

We are going to perform approximate matrix factorization by minimizing the regularized Frobenius loss

L(U,V) =
∑

(i,j)∈I

(aij − u>i vj)
2 + λ

m∑
i=1

‖ui‖2 + λ

n∑
j=1

‖vj‖2, (1)

where λ > 0 is the regularization strength.

The Alternating Least Squares algorithm aims at minimizing the loss function L(U,V) as follows.

Algorithm 1: Alternating Least Squares (ALS)

1 Initialize U,V
2 while not convergent do
3 for i = 1, . . . ,m do
4 ui = (

∑
j:(i,j)∈I vjv

>
j + λIk)−1

∑
j:(i,j)∈I aijvj

5 for j = 1, . . . , n do
6 vj = (

∑
i:(i,j)∈I uiu

>
i + λIk)−1

∑
i:(i,j)∈I aijui

1. Is the objective function (1) convex with respect to the pair (U,V)? If not, prove it.

2. Is the objective (1) convex with respect to U?

3. Derive the update rule for ui. Note that the update rule for vj is symmetric to that for ui.

Hint: differentiate the objective (1) with respect to ui holding V constant and set the gradient to zero.

4. Suppose the computational complexity of inverting a k× k matrix is O(k3), let ni be the number of items
rated by user i. Find the computational complexity of the step

ui =
( ∑

j:(i,j)∈I

vjv
>
j + λIk

)−1 ∑
j:(i,j)∈I

aijvj

in the ALS algorithm above. Use big O notation.

5. For a recommender system, ui and vj can be interpreted as the low-dimensional representations of user i
and item j correspondingly. Interpret the update steps of the ALS algorithm in terms of obtaining low-
dimensional representations for a recommender system.
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Problem 3 (Stochastic Gradient Descent for Collaborative Filtering):

We have seen matrix completion already in Exercise 2, where we approximated a full matrix by an SVD.

In this exercise, we will apply optimization techniques to directly minimize the training error for the (unconstrained)
matrix factorization formulation minU∈Q1,Z∈Q2

f(U,Z), with the objective function being the mean squared error,

f(U,Z) =
1

|Ω|
∑

(d,n)∈Ω

1

2

[
Xdn − (UZT )dn

]2
, (2)

and U ∈ Q1 := RD×K , Z ∈ Q2 := RN×K . Here, Ω ⊆ [D]× [N ] is the set of indices of the observed ratings in
the input matrix X.

Environment setup. Please use the same setup and data as in Exercise 2. This is also explained on the web
page for the collaborative filtering project, https://www.kaggle.com/c/cil-collab-filtering-2019.

The Task. Implement Stochastic Gradient Descent:

1. Derive the full gradient ∇(U,Z)f(U,Z). Note that since we have (D+N)×K variables, the gradient here
can be seen as a (D +N)×K matrix.

2. Derive a stochastic gradient G using the sum structure of f over the Ω elements. We want to do this in
such a way that G only depends on a single observed rating (d, n) ∈ Ω.

3. Implement the Stochastic Gradient Descent algorithm1 for our objective function given in (2).

4. Experimentally find the best stepsize γ to obtain the lowest training error value.

5. Does the test error also decrease monotonically during optimization, or does it increase again after some
time?

6. (Optional) Can you speed up your code, for example by maintaining the set of values (UZ>)dn for the
few observed values (d, n) ∈ Ω, and thereby avoiding the computation of the matrix multiplication UZ>

in every step?

Extensions. Naturally there are many ways to improve your solution. One of them is to use regularization term
to avoid over-fitting. Such techniques and other extensions can be found, e.g., in the following publications:

[1] Webb, B. (2006). Netflix Update: Try This at Home. Simon Funk’s Personal Blog. http://sifter.org/

~simon/journal/20061211.html

[2] Koren Y., Bell R., Volinsky B. (2009). Matrix Factorization Techniques for Recommender Systems. IEEE
Computer, Volume 42, Issue 8, pp. 30-37. http://research.yahoo.com/files/ieeecomputer.pdf

[3] A. Paterek (2007). Improving Regularized Singular Value Decomposition for Collaborative Filtering. Proc.
KDD Cup and Workshop, ACM Press, pp. 39-42.

1https://en.wikipedia.org/wiki/Stochastic_gradient_descent
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