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1 The K-means algorithm

Problem 1 (Theory):

In this exercise, you will elaborate on some of the formal results connecting K-means theory and matrix factor-
ization.

1. Show that the K-means algorithm always converges. In particular, consider the following cost function

J :=

N∑
n=1

K∑
k=1

zk,n‖xn − uk‖22,

and show that steps 2 and 3 of the K-means algorithm from the lecture minimize this cost function for zn
and uk, respectively.

2. Show that the K-means algorithm solves a matrix factorization problem, in the sense that

arg min
Z
‖X −UZ‖2F = arg min

Z

N∑
n=1

K∑
k=1

zk,n‖xn − uk‖22,

when Z ∈ RK×N is additionally restricted to be an assignment matrix (having exactly a single non-zero
entry of 1 in each column). The other matrices are given as follows:

� data matrix X := [x1 · · ·xN ] ∈ RD×N ,

� centroid matrix U := [u1 · · ·uK ] ∈ RD×K ,

� assignment matrix Z := [z1 · · · zN ] ∈ RK×N .

3. Show intuitively that K-means always terminates, i.e. converges in a finite number of steps.

Problem 2 (Practical exercise):

1. You are given a dataset of points {−2, 9, 1,−3, 6, 5, 4, 8} in R. Cluster this dataset using the K-means
algorithm with K = 2. Assume that the two clusters are initialized as follows: C1 contains {9,−2, 5, 8}
and C2 contains {6, 1,−3, 4}. Describe all steps carefully and solve until convergence.

Problem 3 (Implementation):

In this exercise, you will implement a vector quantization scheme for image color compression (one of the most
basic forms of image compression where each pixel is compressed independently).

1. Load the RGB image eth.jpg (Figure 1), which consists of 8 bits per channel. What is its uncompressed
size (considering only pixels and not metadata)?

2. Implement K-means and run it on the image, treating each pixel as a 3D vector (one dimension per color
channel R, G, and B). Initialize the clusters as randomly chosen points that are part the image, and try
k = {4, 16, 64}. What size reduction can you achieve for each k?
Hint: while representing Z in matrix form comes handy for theoretical analysis, in an actual implementation
you do not need to store it explicitly. Storing an index for each data point is enough.



3. As you increase k, you will probably notice that some clusters become empty. Why does this happen? How
do you tackle this issue?

4. In data compression, after applying vector quantization, it is common to compress the assignment matrix
using a coding scheme (e.g. Huffman trees). Assuming that all pixels are compressed independently of each
other, what is the lower bound of bits per pixel that can be achieved?
Hint: compute a probability distribution over cluster assignments and estimate its entropy.

Figure 1: eth.jpg

2 Mixture Models

Problem 1 (EM Algorithm):

In this exercise, we derive the two steps of the Expectation Maximization algorithm. Assume we are given a
data set X consisting of N i.i.d observations {x1, . . . ,xN} and our goal is to cluster these observations using a
mixture of K Gaussian distributions.

1. Write down the expression for the log-likelihood of the mixture model given data X (i.e., ln p(X|π,µ,Σ)).

2. Show that a lower bound of the log-likelihood is given by:

N∑
n=1

K∑
k=1

γnk [logN (xn | µk,Σk) + log πk − log γnk]

.

E-step: the goal is to maximize the lower bound with respect to the posterior probabilities of the latent variables.

3. Show that maximizing the bound w.r.t γnk held the following result:

γnk =
πkN (xn | µk,Σk)∑K
q=1 πqN (xn | µq,Σq)

.

4. Let’s introduce now the cluster assignment for each data point:

znk =

{
1 if point n comes from k-th Gaussian component

0 ow

How is γnk related to znk ?

M-step: the goal is to maximize the lower bound w.r.t. the parameters πk,µ,Σ, assuming a current guess of
γnk.
Note: this is equal to maximize the expected complete log-likelihood:

N∑
n=1

K∑
k=1

γnk

(
log πk + log N (xn | µk,Σk)

)
since γnk is treated as constant.
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5. Show that the optimal mixing coefficients, πk, are given by:

πk =
1

N

N∑
n=1

γnk

Hint: remember to include the constraint
∑K

k=1 πk = 1

6. Show that the optimal choice with respect to the mean vectors µk for all k = 1, . . . ,K, is given as

µk =

∑N
n=1 γnkxn∑N
n=1 γnk

Hint: for a symmetric matrix A ∈ Rn×n and a vector x ∈ Rn it holds that ∂
∂xxTAx = 2Ax.

Problem 2 (Singularities in Gaussian Mixture Models):

In this exercise we consider the problem of singularities when maximizing the likelihood of a Gaussian mixture
model. Assume we are given a data set X consisting of N i.i.d observations {x1, . . . ,xN} and our goal is to
cluster these observations using a mixture of K Gaussian distributions. Now, consider a Gaussian mixture model
whose components have covariance matrices given by Σk = σ2

kI, where I is the unit matrix and suppose that one
of the components, say the j-th, has a mean parameter µj that is equal to one of the data points, i.e. µj = xn

for some n.

1. Write down the expression for the log-likelihood of the mixture model given xn (i.e., ln p(xn|π,µ,Σ)).

2. Compute the likelihood of the j-th mixture component given xn (i.e. N (xn|µj ,Σj)).

Hint: The multivariate Gaussian probability density function is defined as

N (x|µ,Σ) :=
1

(2π)
D
2 |Σ| 12

exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
.

3. What happens to the likelihood of the previous question as σj → 0? How does this affect the log-likelihood
of the mixture model given in question 1?

4. Can the above situation occur when the mixture model consists of a single Gaussian distribution, i.e. K = 1?

5. Can you propose a heuristic to avoid such situations?

Problem 3 (Identifiability):

In this exercise we consider the problem of identifiability of maximum likelihood solutions of mixture models.

1. Suppose that we have solved a mixture of K Gaussians problem and have obtained the values of the
parameters. How many equivalent solutions are there?

2. This problem is known as identifiability. Explain why this is not a problem in the context of data clustering.
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