Exercises Computational Intelligence Lab SS 2020

Series 7, April 2-3, 2020 (K-means and Mixture Models) Machine Learning Institute Dept. of Computer Science, ETH Zürich Prof. Dr. Thomas Hofmann Web http://da.inf.ethz.ch/cil

1 The *K*-means algorithm

Problem 1 (Theory):

In this exercise, you will elaborate on some of the formal results connecting K-means theory and matrix factorization.

1. Show that the K-means algorithm always converges. In particular, consider the following cost function

$$J := \sum_{n=1}^{N} \sum_{k=1}^{K} z_{k,n} \|\mathbf{x}_n - \mathbf{u}_k\|_2^2,$$

and show that steps 2 and 3 of the K-means algorithm from the lecture minimize this cost function for z_n and u_k , respectively.

2. Show that the K-means algorithm solves a matrix factorization problem, in the sense that

$$rgmin_{Z} || X - UZ ||_{F}^{2} = rgmin_{Z} \sum_{n=1}^{N} \sum_{k=1}^{K} z_{k,n} || x_{n} - u_{k} ||_{2}^{2}$$

when $Z \in \mathbb{R}^{K \times N}$ is additionally restricted to be an assignment matrix (having exactly a single non-zero entry of 1 in each column). The other matrices are given as follows:

- data matrix $oldsymbol{X} \coloneqq [oldsymbol{x}_1 \cdots oldsymbol{x}_N] \in \mathbb{R}^{D imes N}$,
- centroid matrix $\boldsymbol{U} := [\boldsymbol{u_1} \cdots \boldsymbol{u_K}] \in \mathbb{R}^{D \times K}$,
- assignment matrix $\boldsymbol{Z} := [\boldsymbol{z_1} \cdots \boldsymbol{z_N}] \in \mathbb{R}^{K \times N}.$
- 3. Show intuitively that K-means always terminates, i.e. converges in a finite number of steps.

Problem 2 (Practical exercise):

1. You are given a dataset of points $\{-2, 9, 1, -3, 6, 5, 4, 8\}$ in \mathbb{R} . Cluster this dataset using the K-means algorithm with K = 2. Assume that the two clusters are initialized as follows: C_1 contains $\{9, -2, 5, 8\}$ and C_2 contains $\{6, 1, -3, 4\}$. Describe all steps carefully and solve until convergence.

Problem 3 (Implementation):

In this exercise, you will implement a vector quantization scheme for image color compression (one of the most basic forms of image compression where each pixel is compressed independently).

- 1. Load the RGB image eth.jpg (Figure 1), which consists of 8 bits per channel. What is its uncompressed size (considering only pixels and not metadata)?
- 2. Implement K-means and run it on the image, treating each pixel as a 3D vector (one dimension per color channel R, G, and B). Initialize the clusters as randomly chosen points that are part the image, and try k = {4, 16, 64}. What size reduction can you achieve for each k? Hint: while representing Z in matrix form comes handy for theoretical analysis, in an actual implementation you do not need to store it explicitly. Storing an index for each data point is enough.

- 3. As you increase k, you will probably notice that some clusters become empty. Why does this happen? How do you tackle this issue?
- 4. In data compression, after applying vector quantization, it is common to compress the assignment matrix using a coding scheme (e.g. Huffman trees). Assuming that all pixels are compressed independently of each other, what is the lower bound of bits per pixel that can be achieved? Hint: compute a probability distribution over cluster assignments and estimate its entropy.

Figure 1: eth.jpg

2 Mixture Models

Problem 1 (EM Algorithm):

In this exercise, we derive the two steps of the Expectation Maximization algorithm. Assume we are given a data set X consisting of N i.i.d observations $\{x_1, \ldots, x_N\}$ and our goal is to cluster these observations using a mixture of K Gaussian distributions.

- 1. Write down the expression for the log-likelihood of the mixture model given data X (i.e., $\ln p(X|\pi, \mu, \Sigma)$).
- 2. Show that a lower bound of the log-likelihood is given by:

$$\sum_{n=1}^{N} \sum_{k=1}^{K} \gamma_{nk} \left[\log \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) + \log \pi_k - \log \gamma_{nk} \right]$$

E-step: the goal is to maximize the lower bound with respect to the posterior probabilities of the latent variables.

3. Show that maximizing the bound w.r.t γ_{nk} held the following result:

$$\gamma_{nk} = \frac{\pi_k \mathcal{N}(x_n \mid \boldsymbol{\mu_k}, \boldsymbol{\Sigma_k})}{\sum_{q=1}^{K} \pi_q \mathcal{N}(x_n \mid \boldsymbol{\mu_q}, \boldsymbol{\Sigma_q})}$$

4. Let's introduce now the cluster assignment for each data point:

$$z_{nk} = \begin{cases} 1 & \text{if point n comes from k-th Gaussian component} \\ 0 & \text{ow} \end{cases}$$

How is γ_{nk} related to z_{nk} ?

M-step: the goal is to maximize the lower bound w.r.t. the parameters π_k, μ, Σ , assuming a current guess of γ_{nk} .

Note: this is equal to maximize the expected complete log-likelihood:

$$\sum_{n=1}^{N} \sum_{k=1}^{K} \gamma_{nk} \Big(\log \pi_k + \log \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \Big)$$

since γ_{nk} is treated as constant.

5. Show that the optimal mixing coefficients, π_k , are given by:

$$\pi_k = \frac{1}{N} \sum_{n=1}^N \gamma_{nk}$$

Hint: remember to include the constraint $\sum_{k=1}^{K} \pi_k = 1$

6. Show that the optimal choice with respect to the *mean vectors* μ_k for all $k = 1, \dots, K$, is given as

$$\boldsymbol{\mu}_k = \frac{\sum_{n=1}^N \gamma_{nk} \mathbf{x}_n}{\sum_{n=1}^N \gamma_{nk}}$$

Hint: for a symmetric matrix $A \in \mathbb{R}^{n \times n}$ and a vector $\mathbf{x} \in \mathbb{R}^n$ it holds that $\frac{\partial}{\partial \mathbf{x}} \mathbf{x}^T A \mathbf{x} = 2A \mathbf{x}$.

Problem 2 (Singularities in Gaussian Mixture Models):

In this exercise we consider the problem of singularities when maximizing the likelihood of a Gaussian mixture model. Assume we are given a data set X consisting of N i.i.d observations $\{x_1, \ldots, x_N\}$ and our goal is to cluster these observations using a mixture of K Gaussian distributions. Now, consider a Gaussian mixture model whose components have covariance matrices given by $\Sigma_k = \sigma_k^2 I$, where I is the unit matrix and suppose that one of the components, say the *j*-th, has a mean parameter μ_j that is equal to one of the data points, i.e. $\mu_j = x_n$ for some n.

- 1. Write down the expression for the log-likelihood of the mixture model given x_n (i.e., $\ln p(x_n | \pi, \mu, \Sigma)$).
- 2. Compute the likelihood of the *j*-th mixture component given x_n (i.e. $\mathcal{N}(x_n | \mu_j, \Sigma_j)$). Hint: The multivariate Gaussian probability density function is defined as

$$\mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) := \frac{1}{(2\pi)^{\frac{D}{2}} |\boldsymbol{\Sigma}|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right).$$

- 3. What happens to the likelihood of the previous question as $\sigma_j \rightarrow 0$? How does this affect the log-likelihood of the mixture model given in question 1?
- 4. Can the above situation occur when the mixture model consists of a single Gaussian distribution, i.e. K = 1?
- 5. Can you propose a heuristic to avoid such situations?

Problem 3 (Identifiability):

In this exercise we consider the problem of *identifiability* of maximum likelihood solutions of mixture models.

- 1. Suppose that we have solved a mixture of K Gaussians problem and have obtained the values of the parameters. How many equivalent solutions are there?
- 2. This problem is known as *identifiability*. Explain why this is not a problem in the context of data clustering.