
Machine Learning Institute

Dept. of Computer Science, ETH Zürich

Prof. Dr. Thomas Hofmann

Web http://da.inf.ethz.ch/cil

Exercises
Computational Intelligence Lab
SS 2020

Series 9, May 7-8, 2020

(Generative models)

Problem 1 (Variational lower bound for generative models):

This exercise follows the main concepts explained by Kingma D. P., and Welling M. in ”Auto-encoding variational
bayes.” (2013), read this paper for further details.
Consider the following general setting for a generative model with continuous latent variables: We have available
a training set X := {x(i)}Ni=1 that is assumed to be generated from a hidden code z ∈ RJ . Each training sample
is generated by first sampling the latent variable z(i) from the true prior pθ∗(z) and then drawing x(i) from
pθ∗(x|z(i)), which could be a complex distribution. A relevant task is to estimate the optimal parameters θ∗ from
the training data. A well known strategy is to maximize the complete-data log-likelihood which is given by

log pθ(x
(1), . . . ,x(n)) =

N∑
i=1

log pθ(x
(i))

1. Show that the likelihood for a single data-point log pθ(x
(i)) is given by

Ez∼qΦ(z|x(i))[log pθ(x
(i)|z)]−DKL(qΦ(z|x(i)) || pθ(z)) +DKL(qΦ(z|x(i)) || pθ(z|x(i))).

where qΦ(z|x(i)) is the variational approximation to the true posterior pθ(z|x). Hint: Use Bayes rule and
EX [f(Y)] = f(Y) if the random variable Y does not depend on X.

2. Group this expression into two terms, and identify the variational lower bound (ELBO) L(θ,Φ;x(i)).

3. In the ELBO which of the 2 terms quantifies reconstruction quality and which one acts as a regularizer?

4. Recall that the ELBO can also be written as

Ez∼qφ(z|x(i))[− log qφ(z|x(i)) + log pθ(x
(i), z)].

The goal is to maximize this lower bound w.r.t. the parameters θ and φ using Monte Carlo sampling to
estimate the expectation. However sampling z can be impractical for our purpose, the reparameterization
trick assigns

z = gφ(ε,x) with ε ∼ p(ε).

Write down the Monte Carlo estimate of the lower bound using this reparameterization trick. Why is this
trick essential for backpropagation ?

5. Let’s consider a univariate Gaussian distribution, assume z ∼ p(z | x) = N (µ, σ2). We want to use the
reparameterization z = gφ(ε, x) with ε ∼ N (0, 1). What is g in this case ?

6. Briefly explain how in the VAE model the log-likelihood could be maximized in practice and summarize the
main differences with a classical autoencoder.

7. Show that for the special case that pθ(z) = N (0, I) is isotropic Gaussian (J dimensions), and qΦ(z|x(i)) is
multivariate Gaussian with a diagonal covariance matrix, the −DKL term in the above expression analytically
integrates to

1

2

J∑
j=1

(
1 + log((σj)

2)− (µj)
2 − (σj)

2
)
.

Problem 2 (Variational Autoencoder):

In this exercise, you will build a variational autoencoder and compare it to a “traditional” autoencoder. For both
experiments, we will encode the digits of the MNIST dataset in a low-dimensional space and look at its structure.

We have provided a notebook exercise09.ipynb with the code template, which includes the model architecture.
It is a very simple convolutional architecture for the encoder and a deconvolutional architecture for the decoder.
Follow the instructions below and answer the questions:

1. Non-linear autoencoder: write the training code for a simple autoencoder, using a binary log-likelihood
loss. You should encode the MNIST training digits into a 2-dimensional vector and reconstruct them. We
suggest using the Adam optimizer and a minibatch size of 256.
Hint: for consistency with the ELBO, you should at least sum the loss across pixels, but we also suggest
averaging it across the batch dimension (instead of summing again) to make it independent of the batch
size and learning rate.

2. Encode all digits of the MNIST test set and visualize the latent space with a scatter plot. What does it
look like?

3. Variational autoencoder: let us now enforce an isotropic Gaussian prior on the latent code. How do we
need to modify the encoder? Do we also need to modify the decoder?
Info: to avoid dealing with positivity constraints, we parameterize σ2 as log σ2 (which is defined across the
entire real domain) and take its exponential to retrieve σ2.

4. Write the code for the reparameterization trick. Why do we restrict ourselves to a diagonal Gaussian, as
opposed to a full covariance matrix?

5. Add the KL term to the previous loss function, and train the model as before.

6. Encode the test set and look again at the latent space. What does it look like? What are the differences
with respect to the previous experiment?

7. Generation: how do you sample from this VAE? Try to sample some digits and visualize them.

Problem 3 (Generative Adversarial Networks):

In this exercise, you will implement a deep convolutional GAN (DCGAN) for generating handwritten digits using
the MNIST dataset. A DCGAN is a convolutional architecture that relies on the GAN framework for training.
The discriminator is a standard convolutional neural network trained for binary classification (real/fake), and the
generator is a deconvolutional network (i.e. uses transposed convolutions to progressively upsample the output
image).

Follow the instructions in the TensorFlow tutorial:

https://github.com/tensorflow/tensorflow/blob/r1.13/tensorflow/contrib/eager/python/examples/generative examples/dcgan.ipynb

Problem 4 (Road Extraction from Satellite Images):

For the third choice of semester project task, we provide a set of satellite/aerial images acquired from GoogleMaps.
We also provide ground-truth images where each pixel is labeled as {road, background}. Your goal is to train a
classifier to segment roads in these images, i.e. assign a label {road=1, background=0} to each pixel.

1. Download the training data from the competition website

inclass.kaggle.com/c/cil-road-segmentation-2020

2. Obtain the python notebook segment aerial images.ipynb from

github.com/dalab/lecture cil public/tree/master/exercises/2020/ex09

to see example code on how to extract the images as well as pixel labels.

The notebook shows how to use scikit learn to generate features from each pixel, and finally train a
linear classifier to predict whether each pixel is road or background. It also provides helper functions to
visualize the images, labels and predictions.

2

https://github.com/tensorflow/tensorflow/blob/r1.13/tensorflow/contrib/eager/python/examples/generative_examples/dcgan.ipynb
https://inclass.kaggle.com/c/cil-road-segmentation-2020
https://github.com/dalab/lecture_cil_public/tree/master/exercises/2020/ex9

3. As a more advanced approach, try tf aerial images.py, which demonstrates the use of a convolutional
neural network in TensorFlow for the same prediction task.

Problem 5 (Galaxy image classification):

For the fourth choice of semester project task, we provide a set of cosmology images observed by astronomical
telescopes, corrupted cosmology images and images with other content. To get you started in exploring the data,
we will consider here the problem of discriminating real cosmology images from the other two groups.

1. Download the supplementary data from the competition website.

inclass.kaggle.com/c/cil-cosmology-2020

2. Read documentation on the supplementary data as needed for this task.

3. Obtain the Python script features cosmology project.py from

github.com/dalab/lecture cil public/tree/master/exercises/2020/ex9

which provides example code for loading the images, extracting basic features from them, and a skeleton
for evaluating machine learning models.

4. Get familiar with the cosmology data by solving a simple binary classification problem: Each image should
be assigned a label from the set {real cosmology = 1, non real cosmology = 0}. For this, divide the
images in the folder labeled into training and test set. Implement hand-crafted image features + baseline
classifiers with Scikitlearn, or learn image features automatically with a deep learning approach using
Tensorflow. Evaluate and contrast your models’ predictive performance and get a feeling for which features
are informative.

3

https://inclass.kaggle.com/c/cil-cosmology-2020
https://github.com/dalab/lecture_cil_public/tree/master/exercises/2020/ex9

