Exercises Computational Intelligence Lab SS 2020 Machine Learning Institute Dept. of Computer Science, ETH Zürich Prof. Dr. Thomas Hofmann Web http://cil.inf.ethz.ch/

Series 11, May 21-22, 2020 (Sparse Coding and Dictionary Learning)

Problem 1 (Sparse coding with overcomplete dictionary):

Given a signal $\mathbf{x} = (3, 1, -2) \in \mathbb{R}^3$ and an overcomplete dictionary $\mathbf{U} = [\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4] \in \mathbb{R}^{3 \times 4}$,

$$\mathbf{U} = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & -1 & 1 & 1\\ 1 & 1 & -1 & 1\\ 1 & 1 & 1 & -1 \end{bmatrix},$$

find the sparse representation \mathbf{z} of the signal \mathbf{x} with $\|\mathbf{z}\|_0 \leq 2$.

a. Find the atom $\mathbf{u}^{(1)}$ that minimizes the reconstruction error $\|\mathbf{x} - \hat{\mathbf{x}}^{(0)}\|_2^2$ where $\hat{\mathbf{x}}^{(0)} = z^{(1)}\mathbf{u}^{(1)}$, and compute the residual $\mathbf{r}^{(1)} = \mathbf{x} - \hat{\mathbf{x}}^{(0)}$.

b. Find the atom $\mathbf{u}^{(2)}$ that minimizes the reconstruction error $\|\mathbf{r}^{(1)} - \hat{\mathbf{x}}^{(1)}\|_2^2$ where $\hat{\mathbf{x}}^{(1)} = z^{(2)}\mathbf{u}^{(2)}$.

c. Write down the sparse representation \mathbf{z} of signal \mathbf{x} .

Problem 2 (Compressed Sensing):

a. Map each of the three equations $\|\mathbf{x}\|_2 = 1$, $\|\mathbf{x}\|_1 = 1$, and $\|\mathbf{x}\|_0 = 1$ to a plot among a., b., or c. on the following figure. Note that \mathbf{x} is a 2D vector with coordinates x_1 and x_2 (i.e. $\mathbf{x} = \begin{bmatrix} x_1, x_2 \end{bmatrix}$).

b. Show the solution of each optimization problem on plots a., b., and c. of the following figure.

c. We can formulate the above three optimization problem as

$$\label{eq:subject} \begin{split} \min \|\mathbf{x}\|_p \\ \text{subject to } \frac{1}{2} x_1 + x_2 = 1, \end{split}$$

where $p \in \{0, 1, 2\}$. Mark the right sentence using your previous answers.

- Solutions of the constrained problems have intersection for p = 1 and p = 0.
- Solutions of the constrained problems have intersection for p = 2 and p = 0.

Problem 3 (Compressed Sensing):

Please find the iPython notebook Compressed_sensing.ipynb from

github.com/dalab/lecture_cil_public/tree/master/exercises/2020/ex11/ex3.ipynb

and answer the questions in this file.

Problem 4 (Matching Pursuit Algorithm):

In the last tutorial session, you have seen that the matching pursuit algorithm converges. In this exercise, you will show some limitations of the algorithm.

a. Find an overcomplete dictionary and a vector \mathbf{x} such that the approximation \mathbf{x} resulting from the matching pursuit algorithm will never exactly equal \mathbf{x} no matter the number of iterations. Note that this implies that at least one atom will be selected multiple times.

Hint: Look for $U\in\mathbb{R}^{2\times3}$ such that MP keeps alternating between $U_{\bullet1}$ and $U_{\bullet2}$

b. Find an instance where the sparse representation returned by matching pursuit (assuming that after some number of iterations, the approximation is perfect) is not optimal, i.e. there is a different representation for which the 0-norm is strictly smaller.

Hint: Look for $\mathbf{U} \in \mathbb{R}^{2 \times 3}$ and $\mathbf{x} \in \mathbb{R}^2$ such that you can find a representation \mathbf{z} "by hand" with $||\mathbf{z}||_0 = 2$ but MP returns a representation \mathbf{z}_{MP} with $||\mathbf{z}_{MP}||_0 = 3$