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(Principal Component Analysis)

Solution 1 (PCA Theory):

1. (a) X̄ = X−M

(b) Σ = 1
N X̄X̄> ∈ RD×D

(c) Σ = UΛUT . In the sequel we assume that Λ = diag(λ1, . . . , λD), where λ1 ≥ . . . ≥ λD ≥ 0. The
eigenvalues are positive because Σ is symmetric. Further, the eigenvector matrix U can be written
as U = [u1, . . . , uD], where ui ∈ RD are unit eigenvectors (i.e. ‖ui‖2 = 1) represented as column
vectors.

(d) Z̄K = U>KX̄. Here, we have UK is given by the first K columns of U, i.e. UK = [u1, . . . , uK ].

(e) X̃ = UKZ̄K

(f) We have that X̃ = UKU>KX̄. The reconstruction error is :

err =
1

N

N∑
i=1

‖x̃i − x̄i‖22 =
1

N
‖X̃− X̄‖2F =

1

N
‖(UKU>K − Id)X̄‖2F

where ‖A‖F =
√

trace(AA>) =
√∑

i σ
2
i is the Frobenius norm of matrix A and σi are its singular

values (the same as eigenvalues if A is symmetric). Thus,

err =
1

N
trace((UKU>K − Id)X̄X̄>(UKU>K − Id)>)

= trace((UKU>K − Id)Σ(UKU>K − Id))

= trace((UKU>K − Id)UΛU>(UKU>K − Id))

= trace((UKU>KU−U)Λ(U>UKU>K −U>))

= trace(([UK ; 0]−U)Λ([UK ; 0]−U)>)

= trace(

D∑
i=K+1

λiuiu
>
i )

=

D∑
i=K+1

λi · trace(uiu
>
i )

=

D∑
i=K+1

λi

where we used the fact that trace(uiu
>
i ) = ‖ui‖22 = 1.

2. (a) Intrinsic dimensionality: high
No knee in eigenvalue spectrum

(b) No, the approximation error is the sum of the discarded eigenvalues and λ100 is still large.

(c) D = 100 (no reduction)



3.

1.

[
1 0
0 2

]
Answer: (B)

2.

[
1 −0.5
−0.5 1

]
Answer: (E)

3.

[
1 0
0 1

]
Answer: (C)

4. (a) We would like to decouple the dimensions/measurements in the transformed dataset, i.e. we would
like to have uncorrelated dimensions.

(b) Consider Z = A>X. Let x̄ be the mean of the dataset X. We write MX =

N times︷ ︸︸ ︷
[x̄, ..., x̄], correspondingly,

MZ = A>MX. We can write the covariance matrix of X as ΣX = (X−MX)(X−MX)>.

The covariance of Z is then given by:

ΣZ = (Z−MZ)(Z−MZ)>

= (A>X−MZ)(A>X−MZ)>

= (A>X−A>MX)(A>X−A>MX)>

= A>(X−MX)(A>(X−MX))>

= A>(X−MX)(X−MX)>A

= A>ΣXA

(c) If we use A = U, we obtain: ΣZ = A>ΣXA

= U>ΣXU

= U>UΛU>U

= U−1UΛU−1U

= IΛI

= Λ

We see that the covariance matrix of Z becomes the diagonal eigenvalue matrix Λ: Choosing the eigen-
vectors associated with the highest eigenvalues results in capturing high variances in the transformed
dataset.
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