Exercises Computational Intelligence Lab SS 2020 Machine Learning Institute Dept. of Computer Science, ETH Zürich Prof. Dr. Thomas Hofmann Web http://da.inf.ethz.ch/cil

Series 4 Solutions (Matrix Approximation & Reconstruction)

Solution 1 (Constrained Optimization with Lagrange Multipliers):

1. Let $\lambda_1 = \max f|_{S^{n-1}}$ and $\mathbf{v}_1 \in S^{n-1}$ a point maximizing f, i.e., $\lambda_1 = f(\mathbf{v}_1)$. Prove that $A\mathbf{v}_1 = \lambda_1\mathbf{v}_1$. The theorem of Lagrange multipliers says that it exists a value $\lambda \in \mathbb{R}$, such that

$$\nabla (f - \lambda g) \left(\mathbf{v}_1 \right) = 0 \tag{1}$$

where $g(\mathbf{x}) = \|\mathbf{x}\|_2^2 - 1$. It follows immediately that $\nabla g(\mathbf{x}) = 2\mathbf{x}$. In order to compute $\nabla f(\mathbf{x})$, we write:

$$f(\mathbf{x}) = \langle \mathbf{x}, \mathbf{A}\mathbf{x} \rangle = \sum_{i,j=1}^{n} \mathbf{A}_{ij} \mathbf{x}_i \mathbf{x}_j$$

and we observe that

$$\frac{\partial \mathbf{x}_i}{\partial \mathbf{x}_j} = \delta_{ij} = \left\{ \begin{array}{ll} 1 & \text{ if } i=j \\ 0 & \text{ if } i\neq j. \end{array} \right.$$

It follows that:

$$\begin{aligned} \frac{\partial f}{\partial \mathbf{x}_k}(x) &= \frac{\partial}{\partial \mathbf{x}_k} \sum_{i,j=1}^n \mathbf{A}_{ij} \mathbf{x}_i \mathbf{x}_j \\ &= \sum_{i,j=1}^n \mathbf{A}_{ij} \delta_{ik} \mathbf{x}_j + \sum_{i,j=1}^n \mathbf{A}_{ij} \delta_{jk} \mathbf{x}_i \\ &= \sum_{j=1}^n \mathbf{A}_{kj} \mathbf{x}_j + \sum_{i=1}^n \mathbf{A}_{ik} \mathbf{x}_i \\ &= \sum_{j=1}^n \mathbf{A}_{kj} \mathbf{x}_j + \sum_{i=1}^n \mathbf{A}_{ki} \mathbf{x}_i \\ &= 2 \sum_{j=1}^n \mathbf{A}_{kj} \mathbf{x}_j \\ &= 2 (\mathbf{A} \mathbf{x})_k \end{aligned}$$

and therefore $\nabla f(\mathbf{x}) = 2\mathbf{A}\mathbf{x}$. By substituting the results above into eq. (1), we get $2\mathbf{A}\mathbf{v}_1 = 2\lambda\mathbf{v}_1$, that is $\mathbf{A}\mathbf{v}_1 = \lambda\mathbf{v}_1$. Now, by multiplying this expression by \mathbf{v}_1 to the left and by recalling that $||\mathbf{v}_1|| = 1$, we get

$$\langle \mathbf{v}_1, \boldsymbol{A}\mathbf{v}_1 \rangle = \lambda \langle \mathbf{v}_1, \mathbf{v}_1 \rangle = \lambda,$$

that is, $f(\mathbf{v}_1)(=\lambda_1) = \lambda$. Therefore $A\mathbf{v}_1 = \lambda_1\mathbf{v}_1$.

2. Now, maximize f on the set $S^{n-2} = \{ \mathbf{x} \in S^{n-1} : \langle \mathbf{x}, \mathbf{v}_1 \rangle = 0 \}$. More specifically, with $g(\mathbf{x})$ as before and $h(\mathbf{x}) := \langle \mathbf{x}, \mathbf{v}_1 \rangle$, consider $g(\mathbf{x}) = 0$ and $h(\mathbf{x}) = 0$ as the new constraints. Assuming that $\lambda_2 = \max f|_{S^{n-2}}$ and $\mathbf{v}_2 \in S^{n-2}$ is a point maximizing f, prove that $A\mathbf{v}_2 = \lambda_2\mathbf{v}_2$.

The theorem of Lagrange multipliers ensures that there exists $\lambda, \mu \in \mathbb{R}$, such that:

$$\nabla (f - \lambda g - \mu h) (\mathbf{v}_2) = 0 \tag{2}$$

The gradient of h is $\nabla h(\mathbf{x}) = \mathbf{v}_1$ for all \mathbf{x} . Substituting this last expression along with $\nabla f(\mathbf{x}) = 2\mathbf{A}\mathbf{x}$ and $\nabla g(\mathbf{x}) = 2\mathbf{x}$ into eq. 2 yields

$$2\mathbf{A}\mathbf{v}_2 = 2\lambda\mathbf{v}_2 + \mu\mathbf{v}_1 \tag{3}$$

By multiplying this equation to the left by \mathbf{v}_1 , recalling that $\langle \mathbf{v}_1, \mathbf{v}_2 \rangle = 0$ and that A is symmetric, we get

$$\begin{aligned} 2 \langle \mathbf{v}_1, A \mathbf{v}_2 \rangle &= 2\lambda \langle \mathbf{v}_1, \mathbf{v}_2 \rangle + \mu \langle \mathbf{v}_1, \mathbf{v}_1 \\ 2 \langle A \mathbf{v}_1, \mathbf{v}_2 \rangle &= 0 + \mu \\ 2\lambda_1 \langle \mathbf{v}_1, \mathbf{v}_2 \rangle &= \mu \\ 0 &= \mu. \end{aligned}$$

Therefore, plugging back into eq. (3), we have $Av_2 = \lambda v_2$. By multiplying this equation by v_2 to the left we obtain

$$\langle \mathbf{v}_2, \mathbf{A}\mathbf{v}_2 \rangle = \lambda \langle \mathbf{v}_2, \mathbf{v}_2 \rangle = \lambda,$$

that is, $f(\mathbf{v}_2) (= \lambda_2) = \lambda$. Therefore $A\mathbf{v}_2 = \lambda_2 \mathbf{v}_2$.

3. Applying the same rationale as above, prove that $A\mathbf{v}_3 = \lambda_3\mathbf{v}_3$, where $\lambda_3 = \max f|_{S^{n-3}} = f(\mathbf{v}_3)$ and $S^{n-3} = \{\mathbf{x} \in S^{n-1} : \langle \mathbf{x}, \mathbf{v}_1 \rangle = 0, \langle \mathbf{x}, \mathbf{v}_2 \rangle = 0\}.$

Let $k(\mathbf{x}) = \langle \mathbf{x}, \mathbf{v}_2 \rangle$ be the new constraint such that $k(\mathbf{x}) = 0$. There exist λ, μ, ν such that

$$\nabla (f - \lambda g - \mu h - \nu k) \left(\mathbf{v}_3 \right) = 0$$

or

$$2\mathbf{A}\mathbf{v}_3 = 2\lambda\mathbf{v}_3 + \mu\mathbf{v}_1 + \nu\mathbf{v}_2.$$

Multiplying this equation by \mathbf{v}_1 yields $\mu = 0$; the multiplication by \mathbf{v}_2 provides $\nu = 0$. Therefore, $A\mathbf{v}_3 = \lambda \mathbf{v}_3$. If we multiply this last equation by \mathbf{v}_3 , we get $f(\mathbf{v}_3)(=\lambda_3) = \lambda$, from which it follows $A\mathbf{v}_3 = \lambda_3\mathbf{v}_3$. Obviously, we have that $\lambda_1 \ge \lambda_2 \ge \lambda_3$ and $\mathbf{v}_1 \perp \mathbf{v}_2 \perp \mathbf{v}_3$ by construction.

4. By iterating the above procedure, conclude that $\{\mathbf{v}_k\}_{k=1}^n$ forms an orthonormal basis of \mathbb{R}^n , with $A\mathbf{v}_k = \lambda_k \mathbf{v}_k$, $\lambda_k = \max f|_{S^{n-k}} = f(\mathbf{v}_k)$, and $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$.

We optimize over the set

$$S^{n-k} = \{ \mathbf{x} \in S^{n-1} : \langle \mathbf{x}, \mathbf{v}_1 \rangle = \langle \mathbf{x}, \mathbf{v}_2 \rangle = \dots = \langle \mathbf{x}, \mathbf{v}_{k-1} \rangle = 0 \}$$

such that, given $\lambda_k = \max f|_{S^{n-k}} = f(\mathbf{v}_k)$, we have $A\mathbf{v}_k = \lambda_k \mathbf{v}_k$. The last three sets will be S^2 (twodimensional sphere, for k = n - 2), S^1 (circumference, for k = n - 1) and S^0 (for k = n) which consists of two points symmetric with respect to the origin, i.e. $S^0 = \{\mathbf{v}_n, -\mathbf{v}_n\}$, S^0 being the space orthogonal to the vector \mathbf{v}_{n-1} in S^1 . Clearly $f|_{S^0}$ is constant since in general $f(\mathbf{x}) = f(-\mathbf{x})$. In order to prove that the last vector \mathbf{v}_n (which is orthogonal to $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{n-1}$) is an eigenvector of A, we just need to observe that

$$\langle \mathbf{v}_j, \mathbf{A}\mathbf{v}_n \rangle = \langle \mathbf{A}\mathbf{v}_j, \mathbf{v}_n \rangle = \lambda_j \langle \mathbf{v}_j, \mathbf{v}_n \rangle = 0, \quad \forall j = 1, 2, \dots, n-1.$$

In words, the vector $A\mathbf{v}_n$ is orthogonal to the vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_{n-1}$ and it is therefore proportional to \mathbf{v}_n , i.e. $A\mathbf{v}_n = \lambda \mathbf{v}_n$. It follows immediately that $\lambda = \lambda_n = f(\mathbf{v}_n)$. By construction, we have that $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$, and $\lambda_1 = f(\mathbf{v}_1)$ which is the maximum eigenvalue of A, while $\lambda_n = f(\mathbf{v}_n)$ is the minimum eigenvalue of A. This method proves that all the eigenvalues of A are real numbers since $\lambda_k = f(\mathbf{v}_k) \in \mathbb{R} \ \forall k = 1, \ldots, n$. The procedure terminates at S^0 because we have constructed n vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ orthogonal to each other and with unitary norm, that is, an orthonormal basis of \mathbb{R}^n consisting of eigenvectors of A.

5. Recap in a few words how the Lagrange multiplier method is used as part of PCA. PCA applies the above result to the variance-covariance matrix $\Sigma = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i \mathbf{x}_i^{\top}$.

Solution 2 (Alternating Least Squares for Collaborative Filtering):

1. Is the objective function $L(\mathbf{U}, \mathbf{V})$ convex? If not, prove it.

The objective is not convex. To prove that, it is sufficient to provide a counter example for m = n = 1. This counter example can be generalized to other dimensions by setting all the entries in U and V to zero except for those with indexes (1, 1):

$$\mathbf{U} = \begin{bmatrix} u & 0 & \dots \\ 0 & 0 & \dots \\ \vdots & \vdots & \ddots \end{bmatrix}, \quad \mathbf{V} = \begin{bmatrix} v & 0 & \dots \\ 0 & 0 & \dots \\ \vdots & \vdots & \ddots \end{bmatrix}.$$

In these cases, the objective reduces to

$$L(u, v) = (a - uv)^2 + \lambda u^2 + \lambda v^2$$

We are going to use the following theorem: a twice differentiable function is convex on a convex set if and only if its Hessian is positive semi-definite on the interior of that convex set.¹ One can easily verify that the objective L(u, v) is twice differentiable and its Hessian is

$$\nabla^2 L(u,v) = 2 \begin{bmatrix} v^2 + \lambda & 2uv - a \\ 2uv - a & u^2 + \lambda \end{bmatrix}.$$
(4)

By setting $u = v = \sqrt{2\lambda + 2|a|}$, we can find that

$$\det \left(\nabla^2 L(u, v)\right) = 4(v^2 + \lambda)(u^2 + \lambda) - 4(2uv - a)^2$$

= $4\left[(3\lambda + 2|a|)^2 - (4\lambda + 4|a| - a)^2\right] < 0.$

Thus, the Hessian (4) is not positive semi-definite everywhere in \mathbb{R}^2 by Sylvester's criterion,² and hence L(u, v) is not convex in \mathbb{R}^2 .

2. Is the objective $L(\mathbf{U}, \mathbf{V})$ convex with respect to U?

Yes. Notice that the Hessian of $L(\mathbf{U}, \mathbf{V})$ with respect to \mathbf{u}_i is

$$\nabla^2_{\mathbf{u}_i} L(\mathbf{U}, \mathbf{V}) = 2 \sum_{j: (i,j) \in \mathcal{I}} \mathbf{v}_j \mathbf{v}_j^\top + \lambda \mathbf{I}_k,$$

a positive definite matrix for any $\lambda > 0$. The Hessian of $L(\mathbf{U}, \mathbf{V})$ with respect to \mathbf{U} will be a block diagonal matrix consisting of $\{\nabla_{\mathbf{u}_i}^2 L(\mathbf{U}, \mathbf{V})\}_{i=1}^m$ – note that the cross derivatives $\nabla_{\mathbf{u}_i} \nabla_{\mathbf{v}_j}$ vanish. Finally, since the spectrum of block diagonal matrices is the union of the constituent matrices,³ the Hessian $\nabla_{\mathbf{U}}^2 L(\mathbf{U}, \mathbf{V})$ is positive definite. Hence, $L(\mathbf{U}, \mathbf{V})$ is convex with respect to \mathbf{U} .

3. Derive the update rule for \mathbf{u}_i . Note that the update rule for \mathbf{v}_j is symmetric to that for \mathbf{u}_i .

$$\nabla_{\mathbf{u}_i} L(\mathbf{U}, \mathbf{V}) = -2 \sum_{j:(i,j) \in \mathcal{I}} (a_{ij} - \mathbf{u}_i^\top \mathbf{v}_j) \mathbf{v}_j + 2\lambda \mathbf{u}_i$$

Setting it to zero, we obtain

$$\sum_{j:(i,j)\in\mathcal{I}} a_{ij}\mathbf{v}_j = \sum_{j:(i,j)\in\mathcal{I}} (\mathbf{u}_i^{\top}\mathbf{v}_j)\mathbf{v}_j + \lambda \mathbf{u}_i$$
$$= \sum_{j:(i,j)\in\mathcal{I}} \mathbf{v}_j(\mathbf{u}_i^{\top}\mathbf{v}_j) + \lambda \mathbf{u}_i$$
$$= \sum_{j:(i,j)\in\mathcal{I}} \mathbf{v}_j(\mathbf{v}_j^{\top}\mathbf{u}_i) + \lambda \mathbf{u}_i$$
$$= \Big(\sum_{j:(i,j)\in\mathcal{I}} \mathbf{v}_j\mathbf{v}_j^{\top}\Big)\mathbf{u}_i + \lambda \mathbf{u}_i$$
$$= \Big(\sum_{j:(i,j)\in\mathcal{I}} \mathbf{v}_j\mathbf{v}_j^{\top} + \lambda \mathbf{I}_k\Big)\mathbf{u}_i$$

Noticing that the matrix is invertible,⁴ the update rule is

$$\mathbf{u}_{i} = \left(\sum_{j:(i,j)\in\mathcal{I}} \mathbf{v}_{j}\mathbf{v}_{j}^{\top} + \lambda \mathbf{I}_{k}\right)^{-1} \sum_{j:(i,j)\in\mathcal{I}} a_{ij}\mathbf{v}_{j}.$$
(5)

¹https://en.wikipedia.org/wiki/Convex_function#Functions_of_several_variables

²https://en.wikipedia.org/wiki/Sylvester%27s_criterion

³https://math.stackexchange.com/q/1307998/261538

⁴Check that it is positive definite for $\lambda > 0$. While doing so, notice that the eigenvalues are lower bounded by λ .

Suppose the computational complexity of inverting a k × k matrix is O(k³), let n_i be the number of items rated by user i. Find the computational complexity of the update step (5). Use big O notation.

The complexity is $O(n_ik^2 + k^3)$. The first term comes from computing the sum of n_i matrices with shape $k \times k$ in (5) and the second term comes from inverting the resulting matrix.

5. For a recommender system, \mathbf{u}_i and \mathbf{v}_j can be interpreted as the low-dimensional representations of the user *i* and the item *j* correspondingly. Interpret the update steps of the ALS algorithm in terms of obtaining low-dimensional representations for a recommender system.

The updates can be interpreted as follows: given low-dimensional representations of the items (resp. users), compute independently the best representation of each user (resp. item). Moreover, recall that (5) is the solution of a ridge regression problem, so further intuition can be gained based on that. For instance, assuming (incorrectly) that $\lambda = 0$, the vector $\mathbf{u}_i \in \mathbb{R}^k$ given by (5) can be seen as the coordinates of the projection of the ratings vector $\mathbf{a}_i = [a_{ij_1}, a_{ij_2}, \ldots, a_{ij_{n_i}}] \in \mathbb{R}^{n_i}$ on the *k*-dimensional sub-space spanned by the vectors $\{\mathbf{v}_{j_1}, \mathbf{v}_{j_2}, \ldots, \mathbf{v}_{j_{n_i}}\}$.

Solution 3 (SGD for Collaborative Filtering):

Consider the given objective function as a sum

$$f(\mathbf{U}, \mathbf{Z}) = \frac{1}{|\Omega|} \sum_{(d,n)\in\Omega} \underbrace{\frac{1}{2} \left[\mathbf{X}_{dn} - (\mathbf{U}\mathbf{Z}^T)_{dn} \right]^2}_{f_{d,n}}$$

where $\mathbf{U} \in \mathbb{R}^{D \times K}$ and $\mathbf{Z} \in \mathbb{R}^{N \times K}$.

• Stochastic Gradient: For one fixed element (d, n) of the sum, we derive the gradient entry (d', k) of U, that is, $\frac{\partial}{\partial u_{n'k}} f_{d,n}(\mathbf{U}, \mathbf{Z})$, and analogously for the \mathbf{Z} part.

$$\begin{split} \frac{\partial}{\partial u_{d',k}} f_{d,n}(\mathbf{U},\mathbf{Z}) &= \begin{cases} -\begin{bmatrix} \mathbf{X}_{dn} - (\mathbf{U}\mathbf{Z}^T)_{dn} \end{bmatrix} z_{n,k} & \text{if } d' = d \\ 0 & \text{otherwise} \end{cases} \\ \frac{\partial}{\partial z_{n',k}} f_{d,n}(\mathbf{U},\mathbf{Z}) &= \begin{cases} -\begin{bmatrix} \mathbf{X}_{dn} - (\mathbf{U}\mathbf{Z}^T)_{dn} \end{bmatrix} u_{d,k} & \text{if } n' = n \\ 0 & \text{otherwise} \end{cases} \end{split}$$

 Full Gradient: We have access to all elements (d, n) ∈ Ω, so we can calculate the partial derivatives of the full gradient for all (d, n) ∈ Ω. For one specific (d, n) ∈ Ω, the partial derivatives are the same as that in the stochastic gradient above.

⁵See https://en.wikipedia.org/wiki/Ordinary_least_squares#Projection for more on this interpretation.