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Solution 1 (Constrained Optimization with Lagrange Multipliers):

1. Let λ1 = max f |Sn−1 and v1 ∈ Sn−1 a point maximizing f , i.e., λ1 = f (v1). Prove that Av1 = λ1v1.

The theorem of Lagrange multipliers says that it exists a value λ ∈ R, such that

∇(f − λg) (v1) = 0 (1)

where g(x) = ‖x‖22 − 1. It follows immediately that ∇g(x) = 2x. In order to compute ∇f(x), we write:

f(x) = 〈x,Ax〉 =

n∑
i,j=1

Aijxixj

and we observe that
∂xi

∂xj
= δij =

{
1 if i = j
0 if i 6= j.

It follows that:

∂f

∂xk
(x) =

∂

∂xk

n∑
i,j=1

Aijxixj

=

n∑
i,j=1

Aijδikxj +

n∑
i,j=1

Aijδjkxi

=

n∑
j=1

Akjxj +

n∑
i=1

Aikxi

=

n∑
j=1

Akjxj +

n∑
i=1

Akixi

= 2

n∑
j=1

Akjxj

= 2(Ax)k

and therefore ∇f(x) = 2Ax. By substituting the results above into eq. (1), we get 2Av1 = 2λv1, that is
Av1 = λv1. Now, by multiplying this expression by v1 to the left and by recalling that ||v1|| = 1, we get

〈v1,Av1〉 = λ 〈v1,v1〉 = λ,

that is, f(v1)(= λ1) = λ. Therefore Av1 = λ1v1.

2. Now, maximize f on the set Sn−2 =
{
x ∈ Sn−1 : 〈x,v1〉 = 0

}
. More specifically, with g(x) as before and

h(x) := 〈x,v1〉, consider g(x) = 0 and h(x) = 0 as the new constraints. Assuming that λ2 = max f |Sn−2

and v2 ∈ Sn−2 is a point maximizing f , prove that Av2 = λ2v2.

The theorem of Lagrange multipliers ensures that there exists λ, µ ∈ R, such that:

∇(f − λg − µh) (v2) = 0 (2)

The gradient of h is ∇h(x) = v1 for all x. Substituting this last expression along with ∇f(x) = 2Ax and
∇g(x) = 2x into eq. 2 yields

2Av2 = 2λv2 + µv1 (3)



By multiplying this equation to the left by v1, recalling that 〈v1,v2〉 = 0 and that A is symmetric, we get

2 〈v1, Av2〉 = 2λ 〈v1,v2〉+ µ 〈v1,v1〉
2 〈Av1,v2〉 = 0 + µ

2λ1 〈v1,v2〉 = µ

0 = µ.

Therefore, plugging back into eq. (3), we have Av2 = λv2. By multiplying this equation by v2 to the left
we obtain

〈v2,Av2〉 = λ 〈v2,v2〉 = λ,

that is, f (v2) (= λ2) = λ. Therefore Av2 = λ2v2.

3. Applying the same rationale as above, prove that Av3 = λ3v3, where λ3 = max f |Sn−3 = f (v3) and
Sn−3 =

{
x ∈ Sn−1 : 〈x,v1〉 = 0, 〈x,v2〉 = 0

}
.

Let k(x) = 〈x,v2〉 be the new constraint such that k(x) = 0. There exist λ, µ, ν such that

∇(f − λg − µh− νk) (v3) = 0

or
2Av3 = 2λv3 + µv1 + νv2.

Multiplying this equation by v1 yields µ = 0; the multiplication by v2 provides ν = 0. Therefore, Av3 =
λv3. If we multiply this last equation by v3, we get f (v3) (= λ3) = λ, from which it follows Av3 = λ3v3.
Obviously, we have that λ1 ≥ λ2 ≥ λ3 and v1 ⊥ v2 ⊥ v3 by construction.

4. By iterating the above procedure, conclude that {vk}nk=1 forms an orthonormal basis of Rn, with Avk =
λkvk, λk = max f |Sn−k = f (vk) , and λ1 ≥ λ2 ≥ · · · ≥ λn.

We optimize over the set

Sn−k =
{
x ∈ Sn−1 : 〈x,v1〉 = 〈x,v2〉 = · · · = 〈x,vk−1〉 = 0

}
such that, given λk = max f |Sn−k = f (vk) , we have Avk = λkvk. The last three sets will be S2 (two-
dimensional sphere, for k = n − 2), S1 (circumference, for k = n − 1) and S0 (for k = n) which consists
of two points symmetric with respect to the origin, i.e. S0 = {vn,−vn}, S0 being the space orthogonal to
the vector vn−1 in S1. Clearly f |S0 is constant since in general f(x) = f(−x). In order to prove that the
last vector vn (which is orthogonal to v1,v2, . . . ,vn−1) is an eigenvector of A, we just need to observe
that

〈vj ,Avn〉 = 〈Avj ,vn〉 = λj 〈vj ,vn〉 = 0, ∀j = 1, 2, . . . , n− 1.

In words, the vector Avn is orthogonal to the vectors v1,v2, . . . ,vn−1 and it is therefore proportional
to vn, i.e. Avn = λvn. It follows immediately that λ = λn = f(vn). By construction, we have that
λ1 ≥ λ2 ≥ · · · ≥ λn, and λ1 = f (v1) which is the maximum eigenvalue of A, while λn = f(vn)
is the minimum eigenvalue of A. This method proves that all the eigenvalues of A are real numbers
since λk = f(vk) ∈ R ∀k = 1, . . . , n. The procedure terminates at S0 because we have constructed n
vectors v1,v2, . . . ,vn orthogonal to each other and with unitary norm, that is, an orthonormal basis of Rn

consisting of eigenvectors of A.

5. Recap in a few words how the Lagrange multiplier method is used as part of PCA.

PCA applies the above result to the variance-covariance matrix Σ = 1
n

∑n
i=1 xix

>
i .

Solution 2 (Alternating Least Squares for Collaborative Filtering):

1. Is the objective function L(U,V) convex? If not, prove it.

The objective is not convex. To prove that, it is sufficient to provide a counter example for m = n = 1.
This counter example can be generalized to other dimensions by setting all the entries in U and V to zero
except for those with indexes (1, 1):

U =

u 0 . . .
0 0 . . .
...

...
. . .

 , V =

v 0 . . .
0 0 . . .
...

...
. . .

 .
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In these cases, the objective reduces to

L(u, v) = (a− uv)2 + λu2 + λv2.

We are going to use the following theorem: a twice differentiable function is convex on a convex set if and
only if its Hessian is positive semi-definite on the interior of that convex set.1 One can easily verify that the
objective L(u, v) is twice differentiable and its Hessian is

∇2L(u, v) = 2

[
v2 + λ 2uv − a

2uv − a u2 + λ

]
. (4)

By setting u = v =
√

2λ+ 2|a|, we can find that

det
(
∇2L(u, v)

)
= 4(v2 + λ)(u2 + λ)− 4(2uv − a)2

= 4
[
(3λ+ 2|a|)2 − (4λ+ 4|a| − a︸ ︷︷ ︸

>2|a|

)2
]
< 0.

Thus, the Hessian (4) is not positive semi-definite everywhere in R2 by Sylvester’s criterion,2 and hence
L(u, v) is not convex in R2.

2. Is the objective L(U,V) convex with respect to U?

Yes. Notice that the Hessian of L(U,V) with respect to ui is

∇2
ui
L(U,V) = 2

∑
j:(i,j)∈I

vjv
>
j + λIk,

a positive definite matrix for any λ > 0. The Hessian of L(U,V) with respect to U will be a block diagonal
matrix consisting of {∇2

ui
L(U,V)}mi=1 – note that the cross derivatives ∇ui∇vj vanish. Finally, since the

spectrum of block diagonal matrices is the union of the constituent matrices,3 the Hessian ∇2
UL(U,V) is

positive definite. Hence, L(U,V) is convex with respect to U.

3. Derive the update rule for ui. Note that the update rule for vj is symmetric to that for ui.

∇ui
L(U,V) = −2

∑
j:(i,j)∈I

(aij − u>i vj)vj + 2λui

Setting it to zero, we obtain ∑
j:(i,j)∈I

aijvj =
∑

j:(i,j)∈I

(u>i vj)vj + λui

=
∑

j:(i,j)∈I

vj(u
>
i vj) + λui

=
∑

j:(i,j)∈I

vj(v
>
j ui) + λui

=
( ∑

j:(i,j)∈I

vjv
>
j

)
ui + λui

=
( ∑

j:(i,j)∈I

vjv
>
j + λIk

)
ui.

Noticing that the matrix is invertible,4 the update rule is

ui =
( ∑

j:(i,j)∈I

vjv
>
j + λIk

)−1 ∑
j:(i,j)∈I

aijvj . (5)

1https://en.wikipedia.org/wiki/Convex_function#Functions_of_several_variables
2https://en.wikipedia.org/wiki/Sylvester%27s_criterion
3https://math.stackexchange.com/q/1307998/261538
4Check that it is positive definite for λ > 0. While doing so, notice that the eigenvalues are lower bounded by λ.
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4. Suppose the computational complexity of inverting a k× k matrix is O(k3), let ni be the number of items
rated by user i. Find the computational complexity of the update step (5). Use big O notation.

The complexity is O(nik
2 + k3). The first term comes from computing the sum of ni matrices with shape

k × k in (5) and the second term comes from inverting the resulting matrix.

5. For a recommender system, ui and vj can be interpreted as the low-dimensional representations of the
user i and the item j correspondingly. Interpret the update steps of the ALS algorithm in terms of obtaining
low-dimensional representations for a recommender system.

The updates can be interpreted as follows: given low-dimensional representations of the items (resp. users),
compute independently the best representation of each user (resp. item). Moreover, recall that (5) is the
solution of a ridge regression problem, so further intuition can be gained based on that. For instance,
assuming (incorrectly) that λ = 0, the vector ui ∈ Rk given by (5) can be seen as the coordinates of the
projection of the ratings vector ai = [aij1 , aij2 , . . . , aijni

] ∈ Rni on the k-dimensional sub-space spanned

by the vectors {vj1 , vj2 , . . . , vjni
}.5

Solution 3 (SGD for Collaborative Filtering):

Consider the given objective function as a sum

f(U,Z) =
1

|Ω|
∑

(d,n)∈Ω

1

2

[
Xdn − (UZT )dn

]2︸ ︷︷ ︸
fd,n

where U ∈ RD×K and Z ∈ RN×K .

• Stochastic Gradient: For one fixed element (d, n) of the sum, we derive the gradient entry (d′, k) of U,
that is, ∂

∂ud′,k
fd,n(U,Z), and analogously for the Z part.

∂

∂ud′,k
fd,n(U,Z) =

{
−
[
Xdn − (UZT )dn

]
zn,k if d′ = d

0 otherwise

∂

∂zn′,k
fd,n(U,Z) =

{
−
[
Xdn − (UZT )dn

]
ud,k if n′ = n

0 otherwise

• Full Gradient: We have access to all elements (d, n) ∈ Ω, so we can calculate the partial derivatives of
the full gradient for all (d, n) ∈ Ω. For one specific (d, n) ∈ Ω, the partial derivatives are the same as that
in the stochastic gradient above.

5See https://en.wikipedia.org/wiki/Ordinary_least_squares#Projection for more on this interpretation.
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