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(Non-Negative Matrix Factorization)

Solution 1 (Convex Relaxation for Exact Matrix Recovery):

Let us consider the singular vector decomposition of matrix A € R™*",
A=UDV', (1)

where matrices U € R™*™ and V € R™"*"™ are orthogonal, and D € R™*" is a diagonal rectangular matrix with
non-negative real numbers on its diagonal, which, for instance, for the case m < n can be represented as follows:

01
02
= [2 O]a E:diag(al,...,am): . ’ 0'120'22"'>0'm20~ (2)

Om

1. Since matrices U and V are orthogonal, and hence full rank matrices, the rank of the matrix A is equal to
the number of its positive singular values

rank(A) = rank(D) = #{0; > 0}. (3)
On the other hand, the Euclidean operator norm! of A is equal to its largest singular value o7,
|All2 = omax(A) = 01. (4)

Therefore, if ||All2 < 1 and hence Vi o; < 1, one can derive the following inequality,

rank(A) = #{o; >0} = > 1> Y JZ-:ZJZ-:HAH*. (5)

. 0;>0 i 0;>0
2. A function f: X — R is convex if Vz,y € X
fOr+ (1 =Ny) <Af(x) + (1= A)f(y) vYA€[0,1]. (6)

Let U,D,V, be the SVD decomposition of AA + (1 — A\)B. Then, we have

[AA + (1 — A)B||. = trace (D)) (M
= trace (U (U\D,V})V,) (8)
= trace (U} (M + (1 = \)B)V,) (9)
= Atrace (U AV,) + (1 — A) trace (U, BV,). (10)

Our proof is done once we bound both terms: trace (U; AV ) < ||A]|, and trace (U{BV)) < | B,. Let

https://en.wikipedia.org/wiki/Operator_norm
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U4D 4V be the SVD decomposition of A. Then, we get

min(m,n)

trace (UJAV,) = Y [UJAV,]! (11)

i=1

min(m,n) )

= Y [UfUaDAV V], (12)
i=1

min(m,n) min(m,n) ; ]

= Z Z [USU]; 05(A) [VAVA] (13)
min(m,n) min(m,n) ;

= Z o;(A) Z [UAUA] [VAVA]] (14)
j=1 i=1

min(m,n)

< X @]t vavir], ()
j=1

min(m,n)
j=1

= [|A[l, (17)

where the superscript ¢ above a matrix denotes its i-th row and the subscript i below a matrix denotes its
i-th column. Similarly, one can bound trace (UIBVA) < ||B]|«, and therefore,

[AA + (1= N)BJl < AA[[ + (1 = A) B[, (18)
which concludes the proof.

3. We are going to rewrite the problem?

Hgn IIB|l«, subjectto [|[A — Bllg =0, (19)
as a problem of semidefinite programming (SDP) in the following form,
. 1 1
piping 5 Tr(Wy) + 3 Tr(Wp) (20)
. W B
subject to [BTI Wz] =0 and ||A —Blg =0.

affine constraints
cone constraints

In what follows, we assume m = n for simplicity. We are going to prove the equivalence of (19) and (20)
with the help of the Schur complement lemma:

W; =0
]>0<:> W, -BTW{B~0 , (21)

[Wl B
(I-W,W)B=0

BT W,

where AT denotes the pseudoinverse of a matrix A, which is a generalization of the inverse matrix defined
for any rectangular matrix.3 The pseudoinverse of a matrix is tightly connected to its SVD decomposition.
If UDV T is the SVD decomposition of matrix A, then the pseudoinverse is equal to AT = VD+UT.

Using the Schur complement lemma, the SDP problem (20) can be reformulated as follows:

. 1 1
B,\%lglwz 3 Tr(Wq) + 3 Tr(Wy) (22)
subject to ||[A — Bl|g =0,
Wl t Oa

W, -B'W/B >0,
(I-W;W;)B=0.

2This one is a bonus question, similar questions will not be asked in the exam.
Shttps://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse
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Since matrix W is symmetric positive semidefinite (W = 0), its SVD decomposition can be parametrized
by an orthogonal matrix U and a diagonal positive semidefinite matrix D > O:

W,; =UDU" >~ 0. (23)
Therefore, the pseudoinverse of W7 is equal to
W/ =UDTU" »o. (24)

Note that replacing the constraint Wy — BT W B = 0 with the equation Wy = BT W B does not affect
the solution. To see this, recall that the trace of a symmetric matrix equals the sum of its eigenvalues, so
Wy with Wy = BTW{ B cannot be a solution because its eigenvalues can be further decreased and, thus,
make the objective (22) smaller. With this, we can prove that the problem (19) is equivalent to

. 1 1
Juin 5 Tr(UDUT) + 3 Tr(BT(UDTUT)B) = L (25)
subject to [|[A — B||g =0,

D =diag(dy,...,d,) = 0,

U orthogonal,

(I-UDDTU")B =0.

Expanding (25), we get

Tr(UDU") + %Tr(BT(UD+UT)B)

NN =N =N

Tr(UTUD) + %Tr((UD*UT)BBT)
Tr(D) + %Tr(DJF(UTBBTU))

1 1o
- —[UTBBTUJ.
di+ 3 .Z U UJ’

7

{\
u

i d; >0 i dy >0

Keeping U and B constant and optimizing for D, we obtain the stationarity condition

D = diag(d,...,d,), withd; =/[UTBBTU]Ji. (26)

Feeding it back into (25), we have that

S STt SN T ol 0]

Moreover, equality is achieved in (27) if we choose B such that its SVD decomposition is UDgV T. With
this choice, the entries of the diagonal matrix D given at stationary points by (26) satisfy

, = > IB uillz > Bl (27)
=1

d; = /[UTBBTUJ: = /[UTUD;VTVD;UTUJ: = /D3 ]:,
and therefore, D = Dp, which satisfies the constraint (I - UDD*U")B = 0 in (25). To recap, with B
restricted to the set {UDV' : VVT =1,}, the minima are preserved, the last 3 constraints in (25) are

satisfied, and the objective becomes the nuclear norm of B, as shown in (27). Thus, the problems (19, 20,
22, 25) are equivalent.

Solution 3 (pLSA and LDA theory, 2):

i. Consider two topics for one document and one word, then (see lecture slides and exercise description)

—0(x) = —log(uivy + ugwa), x = (uy,vy,us,vs).



The above function is not convex. Pick
x=(1,1,0,0), y=1(0,0,1,1)

—U(x/2+y/2) = —log(1/2) > 0 = (—t(x) = (y))/2,

which violates convexity. Note: this does not mean the problem is necessarily hard! One can solve it with
Projected Gradient Descent, and find a local minimizer. However, this will be slow.

ii. Let Q.5 € {0,1} be 1 if word j of document ¢ is associated with topic z, otherwise @.;; = 0. The
log-likelihood, conditioned on this information, is

—log({(U,V)) = — Zzij log (Z inj%ﬂ&j) .
(%) z

Note that, in the sum with respect to z, only one term is non-zero (and is equal to one). Hence, we can
rewrite this as

—log(¢(U,V)) = — Z Tij Z Qijlog(uzivz;)
== xij Y Quij (log(uszs) +log(vs;))
©j z

= _ Z Zij Z Qij (log(uz;) +log(v.;) —10g(Qzij)) -

This using the convention 0log(0) = 0. Note that this corresponds exactly to the lower bounding function
seen in the lecture for variational parameters q.;; such that Zz Gzij = L

(U, V) 2 £,(U,V) = Z wij Y qzij (l0g(u=) + log(vz;) — log(geij))

We will proceed in this more general case and optimize {,, so that we actually get a proof for the M-step
formulas of pLSA. The above objective is convex in each u; and v,;. Hence, the closed-form solution can
be obtained by setting the gradient of the Lagrangian function to zero.

[’U7V(O‘7ﬁ) = _gq(UvV) + Zai <Zuzz - 1) + ZBZ szj -1

We proceed with the gradient:

oL

> Tijzij
auzi '

Q;

1
=0« —in]‘qzij* tai=0eu; =
- Uz
j
Finally, setting 0L/0«; to zero zero yields

;uzizlﬁ%wzl@aizz;pij.
J

Replacing «; in the formulation of u,; concludes the derivation of u,;. Similarly, we can derive the optimum
for the v, s.

Solution 4 (Implementing pLSA for Discovering Topics in a Corpus):

You can find the code at

https://github.com/dalab/lecture_cil_public/tree/master/exercises/ex5
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1. Why does the maximizer of the lower bound ¢, increase at each iteration?
Solution: Recall that the EM steps are (see slides)

UziVzj
E-step: Qij = =——2—
Yk univk
M-step: U, V) = ,(U,V bject t =1 =1
step (U,V) = argmax(,(U, V), subjec ozu Do v =1,
J

where £, was defined in the solution for the last exercise. Clearly the lower-bound maximizer does not
decrease in M-step. So, we just need to show that the ¢, does not decrease in the E-step.
We claim that the E-step is derived from the following maximization problem

£,(U,V), subject to wii = 1.
m?x q( ) ubj EZ:‘I j

To prove this, we need to construct the Lagrangian function and set its gradient to zero:

Lg(a) = —£4(U, V) + Z%‘ <Z Qzij — 1) :

We first derive the optimality condition on g.;;:

- = xij (— log(uzi) — log(vz;) +10g(qzij) + 1 + aij) = 0 qzij = Cxijuzivz;

Then the optimality condition on «y;; implies that Cc1= Tij ZZ UziVzj.

2. Why does the log-likelihood increase on each iteration?
Solution: From the last point, the EM algorithm can be written as

E step: ¢" = argmax ¢,(U", V")
q

M step: (Ut vty = arg Igjlax)fiﬁqnﬂ(U,V),

where we skipped constraints. One can readily check (exercise) that £;n+1 (U™, V") = log¢(U", V").
Hence

log £(U™, V™) = Lns1 (U™, V™) < Lnra (UM VL) <0 (UMH VD) = Jog (U™ VD),

Indeed, EM is an alternating maximisation algorithm.



