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(Non-Negative Matrix Factorization)

Solution 1 (Convex Relaxation for Exact Matrix Recovery):

Let us consider the singular vector decomposition of matrix A ∈ Rm×n,

A = UDV>, (1)

where matrices U ∈ Rm×m and V ∈ Rn×n are orthogonal, and D ∈ Rm×n is a diagonal rectangular matrix with
non-negative real numbers on its diagonal, which, for instance, for the case m < n can be represented as follows:

D =
[
Σ 0

]
, Σ = diag(σ1, . . . , σm) =


σ1

σ2
. . .

σm

 , σ1 ≥ σ2 ≥ · · · ≥ σm ≥ 0. (2)

1. Since matrices U and V are orthogonal, and hence full rank matrices, the rank of the matrix A is equal to
the number of its positive singular values

rank(A) = rank(D) = #{σi > 0}. (3)

On the other hand, the Euclidean operator norm1 of A is equal to its largest singular value σ1,

‖A‖2 = σmax(A) = σ1. (4)

Therefore, if ‖A‖2 ≤ 1 and hence ∀i σi ≤ 1, one can derive the following inequality,

rank(A) = #{σi > 0} =
∑

i: σi>0

1 ≥
∑

i: σi>0

σi =
∑
i

σi = ‖A‖∗. (5)

2. A function f : X → R is convex if ∀x, y ∈ X

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) ∀λ ∈ [0, 1]. (6)

Let UλDλV
>
λ be the SVD decomposition of λA + (1− λ)B. Then, we have

‖λA + (1− λ)B‖∗ = trace (Dλ) (7)

= trace
(
U>λ (UλDλV

>
λ )Vλ

)
(8)

= trace
(
U>λ (λA + (1− λ)B)Vλ

)
(9)

= λ trace
(
U>λAVλ

)
+ (1− λ) trace

(
U>λBVλ

)
. (10)

Our proof is done once we bound both terms: trace
(
U>λAVλ

)
≤ ‖A‖∗ and trace

(
U>λBVλ

)
≤ ‖B‖∗. Let

1https://en.wikipedia.org/wiki/Operator_norm
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UADAV>A be the SVD decomposition of A. Then, we get

trace
(
U>λAVλ

)
=

min(m,n)∑
i=1

[
U>λAVλ

]i
i

(11)

=

min(m,n)∑
i=1

[
U>λUADAV>AVλ

]i
i

(12)

=

min(m,n)∑
i=1

min(m,n)∑
j=1

[
U>λUA

]i
j
σj(A)

[
V>AVλ

]j
i

(13)

=

min(m,n)∑
j=1

σj(A)

min(m,n)∑
i=1

[
U>λUA

]i
j

[
V>AVλ

]j
i

(14)

≤
min(m,n)∑
j=1

σj(A)
∥∥∥[U>λUA

]
j

∥∥∥
2

∥∥∥ [V>AVλ

]j ∥∥∥
2

(15)

=

min(m,n)∑
j=1

σj(A) (16)

= ‖A‖∗, (17)

where the superscript i above a matrix denotes its i-th row and the subscript i below a matrix denotes its
i-th column. Similarly, one can bound trace

(
U>λBVλ

)
≤ ‖B‖∗, and therefore,

‖λA + (1− λ)B‖∗ ≤ λ ‖A‖∗ + (1− λ) ‖B‖∗, (18)

which concludes the proof.

3. We are going to rewrite the problem2

min
B
‖B‖∗, subject to ‖A−B‖G = 0, (19)

as a problem of semidefinite programming (SDP) in the following form,

min
B,W1,W2

1

2
Tr(W1) +

1

2
Tr(W2) (20)

subject to

[
W1 B
BT W2

]
� 0︸ ︷︷ ︸

cone constraints

and ‖A−B‖G = 0︸ ︷︷ ︸
affine constraints

.

In what follows, we assume m = n for simplicity. We are going to prove the equivalence of (19) and (20)
with the help of the Schur complement lemma:[

W1 B
B> W2

]
� 0 ⇐⇒


W1 � 0
W2 −B>W+

1 B � 0
(I−W1W

+
1 )B = 0

, (21)

where A+ denotes the pseudoinverse of a matrix A, which is a generalization of the inverse matrix defined
for any rectangular matrix.3 The pseudoinverse of a matrix is tightly connected to its SVD decomposition.
If UDV> is the SVD decomposition of matrix A, then the pseudoinverse is equal to A+ = VD+U>.

Using the Schur complement lemma, the SDP problem (20) can be reformulated as follows:

min
B,W1,W2

1

2
Tr(W1) +

1

2
Tr(W2) (22)

subject to ‖A−B‖G = 0,

W1 � 0,

W2 −B>W+
1 B � 0,

(I−W1W
+
1 )B = 0.

2This one is a bonus question, similar questions will not be asked in the exam.
3https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse
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Since matrix W1 is symmetric positive semidefinite (W1 � 0), its SVD decomposition can be parametrized
by an orthogonal matrix U and a diagonal positive semidefinite matrix D � 0:

W1 = UDU> � 0. (23)

Therefore, the pseudoinverse of W1 is equal to

W+
1 = UD+U> � 0. (24)

Note that replacing the constraint W2−B>W+
1 B � 0 with the equation W2 = B>W+

1 B does not affect
the solution. To see this, recall that the trace of a symmetric matrix equals the sum of its eigenvalues, so
W2 with W2 � B>W+

1 B cannot be a solution because its eigenvalues can be further decreased and, thus,
make the objective (22) smaller. With this, we can prove that the problem (19) is equivalent to

min
B,U,D

1

2
Tr(UDU>) +

1

2
Tr(B>(UD+U>)B) =: L (25)

subject to ‖A−B‖G = 0,

D = diag(d1, . . . , dn) � 0,

U orthogonal,

(I−UDD+U>)B = 0.

Expanding (25), we get

L =
1

2
Tr(UDU>) +

1

2
Tr(B>(UD+U>)B)

=
1

2
Tr(U>UD) +

1

2
Tr((UD+U>)BB>)

=
1

2
Tr(D) +

1

2
Tr(D+(U>BB>U))

=
1

2

∑
i: di>0

di +
1

2

∑
i: di>0

1

di
[U>BB>U]ii.

Keeping U and B constant and optimizing for D, we obtain the stationarity condition

D = diag(d1, . . . , dn), with di =
√
[U>BB>U]ii. (26)

Feeding it back into (25), we have that

L =

n∑
i=1

√
[U>B]i[B>U]i =

n∑
i=1

√
[B>U]>i [B

>U]i =

n∑
i=1

∥∥∥[B>U]i

∥∥∥
2
=

n∑
i=1

‖B>ui‖2 ≥ ‖B‖∗. (27)

Moreover, equality is achieved in (27) if we choose B such that its SVD decomposition is UDBV>. With
this choice, the entries of the diagonal matrix D given at stationary points by (26) satisfy

di =
√

[U>BB>U]ii =
√
[U>UDBV>VDBU>U]ii =

√
[D2

B ]
i
i,

and therefore, D = DB , which satisfies the constraint (I −UDD+U>)B = 0 in (25). To recap, with B
restricted to the set {UDV> : VV> = In}, the minima are preserved, the last 3 constraints in (25) are
satisfied, and the objective becomes the nuclear norm of B, as shown in (27). Thus, the problems (19, 20,
22, 25) are equivalent.

Solution 3 (pLSA and LDA theory, 2):

i. Consider two topics for one document and one word, then (see lecture slides and exercise description)

−`(x) = − log(u1v1 + u2v2), x = (u1, v1, u2, v2).
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The above function is not convex. Pick

x = (1, 1, 0, 0), y = (0, 0, 1, 1)

−`(x/2 + y/2) = − log(1/2) > 0 = (−`(x)− `(y))/2,

which violates convexity. Note: this does not mean the problem is necessarily hard! One can solve it with
Projected Gradient Descent, and find a local minimizer. However, this will be slow.

ii. Let Qzij ∈ {0, 1} be 1 if word j of document i is associated with topic z, otherwise Qzij = 0. The
log-likelihood, conditioned on this information, is

− log(`(U,V)) = −
∑
ij

xij log

(∑
z

Qzijuzivzj

)
.

Note that, in the sum with respect to z, only one term is non-zero (and is equal to one). Hence, we can
rewrite this as

− log(`(U,V)) = −
∑
ij

xij
∑
z

Qzij log(uzivzj)

= −
∑
ij

xij
∑
z

Qzij (log(uzi) + log(vzj))

= −
∑
ij

xij
∑
z

Qzij (log(uzi) + log(vzj)− log(Qzij)) .

This using the convention 0 log(0) = 0. Note that this corresponds exactly to the lower bounding function
seen in the lecture for variational parameters qzij such that

∑
z qzij = 1:

`(U,V) ≥ `q(U,V) =
∑
ij

xij
∑
z

qzij (log(uzi) + log(vzj)− log(qzij)) .

We will proceed in this more general case and optimize `q, so that we actually get a proof for the M-step
formulas of pLSA. The above objective is convex in each uzi and vzj . Hence, the closed-form solution can
be obtained by setting the gradient of the Lagrangian function to zero.

LU,V(α, β) = −`q(U,V) +
∑
i

αi

(∑
z

uzi − 1

)
+
∑
z

βz

∑
j

vzj − 1

 .

We proceed with the gradient:

∂L
∂uzi

= 0⇔ −
∑
j

xijqzij
1

uzi
+ αi = 0⇔ uzi =

∑
j xijqzij

αi
.

Finally, setting ∂L/∂αi to zero zero yields

∑
z

uzi = 1⇔
∑
z

∑
j xijqzij

αi
= 1⇔ αi =

∑
j

xij .

Replacing αi in the formulation of uzi concludes the derivation of uzi. Similarly, we can derive the optimum
for the vzjs.

Solution 4 (Implementing pLSA for Discovering Topics in a Corpus):

You can find the code at

https://github.com/dalab/lecture_cil_public/tree/master/exercises/ex5

4

https://github.com/dalab/lecture_cil_public/tree/master/exercises/ex5


1. Why does the maximizer of the lower bound `q increase at each iteration?
Solution: Recall that the EM steps are (see slides)

E-step: qzij =
uzivzj∑
k ukivkj

M-step: (U,V) = argmax
U,V

`q(U,V), subject to
∑
z

uzi = 1,
∑
j

vzj = 1,

where `q was defined in the solution for the last exercise. Clearly the lower-bound maximizer does not
decrease in M-step. So, we just need to show that the `q does not decrease in the E-step.
We claim that the E-step is derived from the following maximization problem

max
q
`q(U,V), subject to

∑
z

qzij = 1.

To prove this, we need to construct the Lagrangian function and set its gradient to zero:

Lq(α) = −`q(U,V) +
∑
ij

αij

(∑
z

qzij − 1

)
.

We first derive the optimality condition on qzij :

∂L

∂qzij
= xij (− log(uzi)− log(vzj) + log(qzij) + 1 + αij) = 0⇔ qzij = Cxijuzivzj

Then the optimality condition on αij implies that C−1 = xij
∑
z uzivzj .

2. Why does the log-likelihood increase on each iteration?
Solution: From the last point, the EM algorithm can be written as

E step: qn+1 = argmax
q
`q(U

n,Vn)

M step: (Un+1,Vn+1) = argmax
U,V

`qn+1(U,V),

where we skipped constraints. One can readily check (exercise) that `qn+1(Un,Vn) = log `(Un,Vn).
Hence

log `(Un,Vn) = `qn+1(Un,Vn) ≤ `qn+1(Un+1,Vn+1) ≤ `qn+2(Un+1,Vn+1) = log `(Un+1,Vn+1).

Indeed, EM is an alternating maximisation algorithm.
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