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Problem 0 (LDA Theory):

i. p(z|d) (the probability of a topic given a document) is learned only for documents on which the model
is trained. This might be inconvenient, and makes pLSA not a well-defined generative model. Indeed, to
generate a new document we need to be able to sample topic weights ui = (u1i, . . . , uKi)

>. pLSA has no
good way to provide a new ui, thus only heuristics are possible: for instance, a new document is ”folded
in” and EM is re-run (holding the old parameters fixed) to estimate the topic distribution parameter for this
new document. Also, it is important to note that in pLSA the number of parameters grows linearly with
corpus.

ii. Consider a simplified setting:

– total of N words in our dictionary, and we pick (with replacement) Li words to form document di;

– order of the words does not matter: document summarized in vector xi, where xij counts occurrence
of word j in document i;

– probability of word j in document i is πij .

Simple combinatorics give (i.e. not an assumption) rise to the multinomial distribution.

p(xi|πi) =
Li!∏
j xij !

N∏
j=1

π
xij

ij , xi ∼ Multi(πi).

If word probabilities follow a Dirichlet, i.e. πi ∼ Dir(αi), then something magic happens to the posterior:

p(πi|xi, α) ∝ p(xi|πi)p(πi|αi)

=

 Li!∏
j xij !

N∏
j=1

π
xij

ij

 1

B(αi)

N∏
j=1

π
αij−1
ij

 ∝ N∏
j=1

π
xij+αij−1
ij .

⇒ posterior also going to be Dirichlet, with parameter xi+αi. This makes it possible to derive approximate
inference algorithms to solve (i.e. to approximate posteriors for) LDA.

iii. Advantages of LDA:

– Given the larger number of parameters, pLSA might be more susceptible to overfitting than LDA;

– One can see the Dirichlet prior as a regularizer on the topics distribution;

– model is theoretically sound and motivated (conjugacy, exponential family, approximate inference etc.);

But..

– If your corpus is fixed, not clear one would need a generative model (even though it might be elengant);

– pLSA is far more easy to implement, used more often in industry;

– pLSA and LDA often achieve comparable performance;

– the hyperparameter α, if chosen in a wrong way, can make LDA way worse that pLSA.

For a more detailed explanation, please check https://link.springer.com/content/pdf/10.1007/

s10791-010-9141-9.pdf

https://link.springer.com/content/pdf/10.1007/s10791-010-9141-9.pdf
https://link.springer.com/content/pdf/10.1007/s10791-010-9141-9.pdf


Problem 1: Latent Vector Model

i. English grammar implies p(w|w′) > p(w′|w). However, the proposed model, we have

log(p(w|w′)) = 〈xw,xw′〉+ β = 〈xw′ ,xw〉+ β = log(p(w′|w)).

Hence p(w|w′) always equals p(w′|w). A solution might be to use an asymmetric model:

p(w|w′) = 〈xw,yw′〉+ β.

ii. Recall the log-likelihood function is

L(x) =

N∑
n=1

∑
4∈I

log p(wn+∆|wn)

where I is the window. Suppose that the window size is 3. According to this likelihood, we need to find
an embedding z such that

argmax
z
〈z,xthe〉+ 〈z,xon〉+ 〈z,xchair〉.

You can similarly solve the problem for window size 4.

Window size predicted word (horse, mat, or chair)

3 Solution: chair
4 Solution: mat

Problem 2 (Introduction to SGD):

i. A straight-forward computation concludes the result:

Er [∇fr(w)] =

n∑
i=1

P (r = i)∇fi(w) =
1

n

n∑
i=1

∇fi(w).

ii. The negative gradient gives a linear approximation to the direction of steepest descent of a function. Hence,
a simple way to optimize a function is to ”follow the gradients” for short steps of length γ. We illustrate
convergence in the deterministic case using the function f(w) = w2/2. With a step γ = 0.5 the algorithm
reads w ← w−0.5w = 0.5w. Starting from any w0 ∈ R, the algorithm converges to the minimizer w∗ = 0.

iii. The intuition behind it does not change if stochastic gradient are used, but the algorithm will be sometimes
slower iteration-wise, since the optimizer is ”confused” by the noise. Yet, using stochastic gradients (if n is
really big) results in a superior per-iteration complexity (true gradient is a sum over all stochastic gradients).

Problem 3 (Negative sampling):

i. The gradient with respect to any xv of the normalization constant log
(∑

w′∈V exp[〈xw′ ,yw〉]
)

is

exp(〈yw,xv〉)∑
w′∈V exp(〈yw′ ,xv〉)

yw.

This gradient includes a summation over the discionary V. In most cases, there are 20,000 or 1 million
words which makes this sum prohibitively large if one wants to run the SGD algorithm (let alone gradient
descent!) which needs to be able to compute many small updates inexpensively (see previous exercise).

ii. Note that, for any f : Rd → R and x ∈ Rd, ∇x lnσ(f(x)) = �������1
σ(f(x))σ(f(x))(1− σ(f(x)))∇xf(x). Thus,

the gradient with respect to xv of the negative sampling objective is is∑
(v,w)∈4+

(1− σ(〈xv,yw〉))yw +
∑

(v,w)∈4−
(σ(〈xv,yw〉)− 1)yw.

First, note that this computation does not depend on |V| and should be fast enough to allow for cheap
gradient updates. Second, the overall gradient is completely decoupled into a sum, thus one can update
the objective in sampled batches of the data.
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Problem 4 (GloVe and SGD):

1) a) Apply the chain rule of gradients,

∇xi
H =

∑
j: nij>0

2(〈xi,yj〉 −mij)yj ,

∇yj
H =

∑
i: nij>0

2(〈xi,yj〉 −mij)xi.

b) H =
∑
ij Hij where Hij := f(nij)(〈xi,yj〉 −mij)

2. Since the gradient is linear, it factorizes over
this sum as ∇H =

∑
ij ∇Hij , enabling us to apply SGD. Moreover, it makes sense to compute the

stochastic gradient with respect to the relevant embedding vectors, which is:

∇xi
Hij = 2(〈xi,yj〉 −mij)yj ,

∇yj
Hij = 2(〈xi,yj〉 −mij)xi.

2) Plug in the specific weight function:

H =
∑

i,j: nij>0

(mij − 〈xi,yj〉)2 =
∑

i,j: nij>0

(
mij − (X>Y)ij

)2
.

the minimization of which w.r.t. X,Y is a problem of matrix completion.

3) We have

∇xi
H =

∑
j: nij>0

2f(nij)(〈xi,yj〉 −mij)yj ,

∇yjH =
∑

i: nij>0

2f(nij)(〈xi,yj〉 −mij)xi.

∇xiHij = 2f(nij)(〈xi,yj〉 −mij)yj ,

∇yjHij = 2f(nij)(〈xi,yj〉 −mij)xi.

Problem 5-6 (Coding):

The solution files are in the public git repository:

https://github.com/dalab/lecture_cil_public/tree/master/exercises/ex6

Hint for Step 3 of the GloVe implementation): you can use PCA provided by scikit-learn, e.g. http: //

scikit-learn. org/ stable/ auto_ examples/ decomposition/ plot_ pca_ 3d. html or any other library.
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https://github.com/dalab/lecture_cil_public/tree/master/exercises/ex6
http://scikit-learn.org/stable/auto_examples/decomposition/plot_pca_3d.html
http://scikit-learn.org/stable/auto_examples/decomposition/plot_pca_3d.html

