
Machine Learning Institute

Dept. of Computer Science, ETH Zürich

Prof. Dr. Thomas Hofmann

Web http://da.inf.ethz.ch/cil

Exercises
Computational Intelligence Lab
SS 2020

Series 7, Solutions

(K-means and Mixture Models)

1 The K-means Algorithm

Problem 1 (Theory):

1. (Convergence of the K-Means Algorithm) The K-means algorithm converges since at each iteration it
either reduces or keeps the same the value of the objective function J , where

J =

N∑
n=1

K∑
k=1

zk,n‖xn − uk‖22
(
‖xn − uk‖22 = (x1,n − u1,k)2 + · · ·+ (xd,n − ud,k)2

)
with the constraint

K∑
k=1

zk,n = 1 and zk,n ∈ {0, 1}.

When initializing the algorithm, at step 2 of the K-means algorithm we set

zk∗(xn),n = 1 and zk′,n = 0,

where
k∗(xn) = argmin

k

{
‖xn − u1‖22, . . . , ‖xn − uk‖22, . . . , ‖xn − uK‖22

}
.

This makes the value of J minimal considering that we have to assign the value 1 to one and only one zk,n,
and 0 to all others.

At step 3, the centroid update term you are familiar with:

uk =

∑N
n=1 zk,nxn∑N
n=1 zk,n

∀k, k = 1, . . . ,K

means that

0 =

N∑
n=1

zk,n(xn − uk) ∀k, k = 1, . . . ,K

Note that this equals setting the derivative of J with respect to uk to zero for all k, k = 1, . . . ,K, as a
partiuclar derivative is given by:

∂J

∂uk
=
∂
∑N
n=1 zk,n‖xn − uk‖22

∂uk
=

N∑
n=1

zk,n


∂(x1,n−u1,k)

2

∂u1,k

...
∂(xd,n−ud,k)

2

∂ud,k

 = −2

N∑
n=1

zk,n(xn − uk)

Note that ∂2J
∂u2

k
≥ 0, or in other words, J is convex with respect to uk, which indicates that this is a

minimizer. Thus, the value of J does not increase after the centroid update. Considering all the above, it
follows that repeating steps 2 and 3 in iterations means that the value of J will converge.

2. (The K-Means Algorithm and Matrix Factorization) Notice that

‖X − UZ‖2F =

D∑
i=1

N∑
j=1

(xi,j −
K∑
k=1

ui,kzk,j)
2 (expand matrix norm) (1)

=

D∑
i=1

N∑
j=1

(
K∑
k=1

zk,j(xi,j − ui,k)

)2

(push xi,j inside summation) (2)

=

D∑
i=1

N∑
j=1

K∑
k=1

z2k,j(xi,j − ui,k)2 (evaluate squared term) (3)

=

K∑
k=1

N∑
j=1

z2k,j

D∑
i=1

(xi,j − ui,k)2 (reorder summations) (4)

hence

‖X − UZ‖2F =

K∑
k=1

N∑
j=1

zk,j‖xj − uk‖22.

For this derivation, we exploited two key properties of the problem. (i) For any data point j, zk,j is 1 only
for one k and 0 elsewhere, which allows us to push xi,j inside the summation in line 2 without affecting
the value of the objective function. Similarly, in line 3, the evaluation of the squared term does not result
in any interaction terms (the summation can simply be rewritten as-is). (ii) z2k,j = zk,j since zk,j is either
0 or 1. In the final step we simply rewrite the summation over D as a norm.

3. (Termination) Since K-Means uses hard cluster assignments, there is a finite number of possible cluster
assignments (even though this is exponential in the number of data points). This entails that the algorithm
must enter a cycle at some point. This cycle has length 1 because the value of the objective function J
cannot increase between subsequent iterations (recall from exercise 1). In practice, full convergence may
require a large number of steps. The typical workaround consists in setting a maximum number of iterations
or stopping when the difference of J between subsequent iterations is lower than a threshold ε.

Problem 2 (Practical exercise):

The assignments of the first iteration are already provided. The corresponding cluster centers are c1 = 5 and
c2 = 2. The next assignments are C1 = {−3,−2, 1} and C2 = {4, 5, 6, 8, 9}, which correspond to the centers
c1 = −4/3 and c2 = 6.4. The following iteration results in the same assignments, which means that the algorithm
has converged.

Problem 3 (Implementation):

The code is provided in the notebook kmeans.ipynb.

1. (Image size) The image can be represented as a W × H × 3 tensor. Each channel is 8 bits long, i.e. 24
bits per pixel. The uncompressed size (excluding metadata) is 465× 606× 24 = 6,762,960 bits.

2. (Size reduction) Figure 1 shows the compression result for k = 4. For a general k, the number of bits per
pixels to encode an assignment is log2 k, that is, 2 bits per pixel for k = 4, 4 bits for k = 16, and 6 bits for
k = 64, corresponding to a size reduction of a factor (respectively) 12, 6, and 4.

3. (Empty clusters) This can happen due to poor initialization (as the algorithm can get stuck in bad local
minima), or if the number of clusters is too large (consider the extreme case of having more clusters than
data points). In practice, most implementations tackle this issue by assigning empty clusters to a random
point, or by removing them entirely (ending up with a lower k when the algorithm terminates).

4. (Coding) The Shannon entropy of a probability distribution is given by

H = −
K∑
k=1

pk · log2 pk

2

Here we use the base 2 since we are encoding bits (binary data). The actual result depends on the
image and may vary across different runs of the algorithm. The results that we observed using our sample
implementation are summarized in Table 1. The resulting distribution of colors is relatively uniform and
optimal coding cannot compress the data further, which shows why K-means is useful for data compression.
Coding schemes that exploit neighborhood (e.g. run-length encoding) can compress the data further.

k Uncompressed Binary coded Optimally coded
4 24 bits/pixel 2 bits/pixel 1.966 bits/pixel

16 24 bits/pixel 4 bits/pixel 3.871 bits/pixel
64 24 bits/pixel 6 bits/pixel 5.757 bits/pixel

Table 1: Bits per pixels for different values of k.

(a) Original (b) Compressed with k = 16

Figure 1: eth.jpg

2 Mixture Models

Problem 1 (EM Algorithm):

In this exercise, we derive the two steps of the Expectation Maximization algorithm.

1. The log-likelihood of the data is given by

ln p(X | π,µ,Σ) =

N∑
n=1

ln

{
K∑
k=1

πkN (xn | µk,Σk)

}
.

2. Any distribution, γ, can be used to obtain a lower bound of the log-likelihood. For sake of simplicity let’s
define pθk(xn) = p(x; θk) = N (xn | µk,Σk), then:

log p(X; θk) =

N∑
n=1

log

[
K∑
k=1

πkpθk(xn)

]
=

N∑
n=1

log

[
K∑
k=1

γnk
πk pθk(xn)

qk

]

≥
N∑
n=1

K∑
k=1

γnk [log pθk(xi) + log πk − log γnk]

where we used Jensen’s inequality in the last step.
Indeed, for αi ≥ 0,

∑
αi = 1 and any {xi > 0} it holds:

log

(∑
i

αixi

)
≥
∑
i

αi log(xi)

3

3. See lecture slides (similar procedure of 5).

4. The optimized distribution, γ, is equal to the probability of the latent variables z.

γnk = p(znk) = p(zk | xn) = probability that xn is assigned to cluster k.

5. Include the constraint
∑K
k=1 πk = 1 with a Lagrange multiplier:

N∑
n=1

K∑
k=1

γnk

(
log πk + log N (xn | µk,Σk)

)
+ λ

(
K∑
k=1

πk − 1

)

Take the derivative with respect to πk and set it to zero:

N∑
n=1

γnk

(1

πk

)
+ λ = 0 ⇐⇒ πk =

∑N
n=1 γnk
−λ

To determine λ, use the normalization condition:

K∑
k=1

πk =

K∑
k=1

∑N
n=1 γnk
−λ

=

∑N
n=1

∑K
k=1 γnk

−λ
=

N

−λ
= 1⇐⇒ −λ = N

Here we used the fact that
∑K
k=1 γnk =

∑K
k=1 p(zk | xn) = 1. Hence the mixing coefficients are:

πk =

∑N
n=1 γnk
N

6. Take the derivative with respect to µk and set it to zero:

∂

∂µk

{
N∑
n=1

K∑
k=1

γnk

(
log πk + log N (xn | µk,Σk)

)}

=
∂

∂µk

{
N∑
n=1

K∑
k=1

γnk

[
−1

2
(xn − µk)TΣ−1

k (xn − µk)

]}

=

N∑
n=1

γnkΣ−1
k (xn − µk) = Σ−1

k

N∑
n=1

γnk(xn − µk) = 0

Here we used the property that for a symmetric matrix A ∈ RD
D and a vector x ∈ RD, then ∂

∂xxTAx = 2Ax.
One possible solution is then:

µk =

∑N
n=1 γnkxn∑N
n=1 γnk

Problem 2 (Singularities in Gaussian Mixture Models):

In this section, we study the problem of singularities in the mixture of Gaussian models. Consider the data set X
consisting of N i.i.d observations {x1, . . . ,xN}. The goal is to cluster this data set using mixture of K Gaussians.

1. For the data point xn we have log-likelihood

ln p(xn | π,µ,Σ) = ln

{
K∑
k=1

πkN (xn | µk,Σk)

}
.

4

2. Computing the likelihood assuming µj = xn leads to

p(xn|µj ,Σj) = N (xn|µj ,Σj)

= N (xn|xn, σ2
j I)

=
1

(2π)D/2
1

σDj
(5)

3. We see that as σj → 0, (5) goes to infinity and so the likelihood function will also go to infinity. Thus the
maximization of the log likelihood function is not a well posed problem and causes the convergence to be
very slow. This can lead to a very poor clustering. Such singularities will always be present and will occur
whenever one of the Gaussian components ‘collapses’ onto a specific data point.

4. This problem does not arise in the case of a single Gaussian distribution. If a single Gaussian collapses onto
a data point it will contribute multiplicative factors to the likelihood function arising from the other data
points and these factors will go to zero exponentially fast, giving an overall likelihood that goes to zero
rather than infinity.

However, once we have (at least) two components in the mixture, one of the components can have a finite
variance and therefore assign finite probability to all of the data points while the other component can shrink
onto one specific data point and thereby contribute an ever increasing additive value to the log likelihood.

5. We can hope to avoid the singularities by using suitable heuristics, for instance by detecting when a Gaussian
component is collapsing and resetting its mean to a randomly chosen value while also resetting its covariance
to some large value, and then continuing with the optimization.

Problem 3 (Identifiability):

A further issue in finding maximum likelihood solutions arises from identifiability. In this section we study
identifiability in mixture models.

1. For any given maximum likelihood solution, a K-component mixture will have a total of K! equivalent
solutions corresponding to the K! ways of assigning K sets of parameters to K components.

2. Because any of the equivalent solutions is as good as any other. Using any permutation of these parameters
leads to the same clustering with permuted cluster indices.

5

	The K-means Algorithm
	Mixture Models

