
Machine Learning Institute

Dept. of Computer Science, ETH Zürich

Prof. Dr. Thomas Hofmann

Web http://da.inf.ethz.ch/cil

Exercises
Computational Intelligence Lab
SS 2020

Series 8, April 23-24, 2020

(Neural Networks)

Problem 1 (Linear MLP):

1. Let’s write down the output, o′′:

h1 = a× x1 + c× x2

h2 = b× x1 + d× x2

o′′ = e× h1 + f × h2

Plugging in h1 and h2 in the last equation you obtain:

o′′ = (ae+ bf)× x1 + (ce+ df)× x2

Hence setting ω1 = ae+ bf and ω2 = (ce+ df) the two outputs o′ and o′′, are the same.
In general any multilayer linear perceptron can be squeezed as single layer linear perceptron with according
weights, hence there is no gain in adding layers.

2. Intuitively XOR outputs are not linearly separable. This can be seen in the figure below, there are no straight
lines that divides the blue points, where the XOR output is 1, to the light blue ones in which the XOR
output is 0.

More formally, any linear MLP can be seen as a single layer linear perceptron, i.e. the output is a linear
transformation of its input: o = ω1x1 + ω2x2. If we want the output to imitate the XOR function then:
o([1, 0]) = 1 = ω1 and o([0, 1]) = 1 = ω2. However o([1, 1]) = ω1 + ω2 = 2 6= 0, hence there are no ω1, ω2

that satisfy the conditions.

Problem 2 (Neural Networks):

1.

∀x ∈ R, s′(x) = − −e−x

(1 + e−x)2
=

1

1 + e−x
· e−x

1 + e−x
= s(x) · (1− s(x)).

2.
h1 = ω′11 × x1 + ω′12 × x2 = 0.18

h2 = ω′21 × x1 + ω′22 × x2 = 0.14



out(h1) = s(h1) =
1

1 + exp(−h1)
= 0.54

out(h2) = s(h2) =
1

1 + exp(−h2)
= 0.53

o = ω′′1 × out(h1) + ω′′2 × out(h2) = 0.22

ŷ = s(o) =
1

1 + exp(−o)
= 0.55.

The loss is then:

L(w′,w′′) = −y log ŷ − (1− y) log(1− ŷ) = − log(1− ŷ) = 0.81

3. (a) For one training example x = (xi)1≤i≤d and m hidden layers (hj)1≤j≤m then:

hj = s(

d∑
i=0

ωjixi)

ŷ =

m∑
j=0

ωjhj =

m∑
j=0

ωjs(

d∑
i=0

ωjixi) = wT s(Wx)

where w = (w1, w2, · · · , wm) and Wji = wji and s(y) = (s(y1), · · · , s(ym)).

(b) The MSE for one training example with label y is given by

E(w) = (ŷ − y)2 = (

m∑
j=0

ωjs(

d∑
i=0

ωjixi)− y)2,

and its partial derivative with respect to the single parameter wj′ is given by:

∂

∂wj′
E(w) = 2(ŷ − y) · ∂

∂wj′
ŷ

∂

∂wj′
ŷ = hj .

Hence we obtain:
∂

∂wj′
E(w) = 2(

m∑
j=0

ωjs(

d∑
i=0

ωjixi)− y) · s(
d∑

i=0

ωj′ixi)

.

The partial derivative w.r.t. the parameter wj′i′ is instead:

∂

∂wj′i′
E(w) = 2(ŷ − y) · ∂

∂wj′i′
ŷ

∂

∂wj′i′
ŷ = ωj′ ·

∂

∂wj′i′
(hj′)

∂

∂wj′i′
(hj′) = s′(

d∑
i=0

ωjixi) · xi′ = s(

d∑
i=0

ωjixi)(1− s(

d∑
i=0

ωjixi))xi′

Notice that this closed-form formula doesn’t require us to actually compute any derivative.

(c) The partial derivative of the loss w.r.t. the input xi′ is:

∂

∂xi′
E(w) = 2(ŷ − y) · ∂

∂xi′
ŷ

∂

∂xi′
ŷ =

m∑
j=0

∂ŷ

∂hj′
·∂hj′

∂xi′
=

m∑
j=0

ωjs
′(

d∑
i=0

ωjixi)·
∂

∂xi′
(

d∑
i=0

ωjixi) =

m∑
j=0

ωjs(

d∑
i=0

ωjixi)(1−s(
d∑

i=0

ωjixi))ωji′

2



Problem 3 (Convolutional Neural Networks):

1. The convolutional layer has two 2-channels filters K1 and K2, with each filter channel Kl
c having an odd

number of pixels, so that we can index them as (Kl
c)i,j for −k ≤ i, j ≤ k. The convolutional layer can be

seen as taking as input the image (Ic)1≤c≤2 where (Ic)i,j is the pixel of position (i, j) and channel c, for
1 ≤ i, j ≤ 4, and giving as output the following 4x4 2-channels image, whose pixel (i′, j′) of channel l is
given by

(I ? Kl)i′,j′ =
∑

1≤c≤2

∑
−k≤i,j≤k

(Ic)i′+i,j′+j(K
l
c)i,j ,

where (Ic)a,b = 0 for (a, b) outside of the range of pixels {1, ..., 4} × {1, ..., 4} of I, because of the zero-
padding.

2. The ReLU activation function is defined by ReLU(x) = max(0, x). Applying such a real function to an
image consists of applying it to each pixel. Hence after the convolutional layer and the non-linearity, we get
the following two images, for l ∈ {1, 2}, whose pixels (i′, j′) are given by

(ReLU(I ? Kl))i′,j′ = max

0,
∑

1≤c≤2

∑
−k≤i,j≤k

(Ic)i′+i,j′+j(K
l
c)i,j

 .

Then, applying a 3x3 max-pooling with stride 1 to such a 1-channel image gives us the following image,
whose pixel (i, j) is given by

max
−1≤i′,j′≤1

(ReLU(I ? Kl))i+i′,j+j′ .

3. We have

K1
1 =

 0 1 0
1 −1 1
0 1 0

 ,

and

I1 =


2 3 4 5
3 5 7 9
4 7 10 13
5 9 13 17

 , I2 =


3 4 5 6
4 6 8 10
5 8 11 14
6 10 14 18

 ,

hence
(I ? K1)1,1 = (−2 + 3 + 3) + (−6 + 4 + 4) = 6.

Similarly,
(I ? K1)1,2 = (−3 + 2 + 4 + 5) + (−8 + 3 + 5 + 6) = 14,

(I ? K1)2,1 = (−3 + 2 + 4 + 5) + (−8 + 3 + 5 + 6) = 14,

(I ? K1)2,2 = (−5 + 3 + 3 + 7 + 7) + (−12 + 4 + 4 + 8 + 8) = 27,

etc.

4. In this case, all pixel values happen to be non-negative, hence applying ReLU doesn’t change the values.

5. For the first coefficient, we have

max
−1≤i′,j′≤1

(ReLU(I ? Kl))1+i′,1+j′ = max(0, 6, 14, 27) = 27.

3



Problem 4 (Getting Started with TensorFlow):

The solution is provided in the notebook solution08.ipynb. Here are the answers to the questions:

� The linear model fits blobs properly because the dataset is linearly separable.

� On the other hand, circles is not linearly separable, so a simple linear model is not expressive enough.

� Adding a hidden layer with non-linear activations (e.g. ReLU) allows modeling arbitrary distributions. One
hidden layer with 10–100 neurons is enough for circles.

� SGD converges faster than batch GD because it exploits the redundancy of the data to approximate the
gradient, resulting in more weight updates per epoch (epoch = single pass over the entire dataset) with
a much lower computational cost. Moreover, the gradient noise allows the optimizer to escape sharp
local minima and converge to wider minima (which has an implicit regularization effect, i.e. improves
generalization). A drawback of SGD is that it reduces parallelism, which can be a problem for GPUs as
they rely on parallel computations. This can however be tackled by using sufficiently large minibatches.

4


