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(Generative Models)

Problem 1 (Variational lower bound for generative models):

1. We transform the likelihood as follows to derive the ELBO:
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In the first identity we used that z ∼ qΦ(z|x(i)) does not depend on log pθ(x
(i)), so we can introduce the

expectation, (as given in the hint EX(f(Y )) = f(Y ) if X does not depend on Y ). The second equality
follows from using Bayes rule in reverse to introduce the desired probabilities. Lastly we multiply the
expression by a constant to introduce the variational distribution qΦ.

2. We can group the expression into two terms as:

log pθ(x
(i)) = L(θ,Φ,x(i)) +DKL(qφ(z|x(i))||pθ(z|x(i)))︸ ︷︷ ︸

≥0

where the ELBO is L(θ,Φ,x(i)) = Ez[log pθ(x
(i)|z)]−DKL(qφ(z|x(i))||pθ(z)).

3. The term −DKL(qφ(z|x(i))||pθ(z)) encourages the posterior distribution to be close to the prior distribution
on the latent variables z, which acts as a regularizer. The first term Ez[log pθ(x

(i)|z)] maximizes the
likelihood of the generated data x(i), which is related to reconstruction quality.

4. Using the reparameterization trick, z = gφ(ε,x) with , we can sample ε ∼ p(ε) and use Monte Carlo
estimate. The ELBO then becomes

L(θ, φ;x(i)) = Ez∼qφ(z|x(i))[− log qφ(z|x(i)) + log pθ(x
(i), z)]

≈ 1
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where z(i,l) = gφ(ε(i,l),x(i)) and ε(l) ∼ p(ε).
Doing so we express the random variable z as a deterministic variable where ε is an auxiliary variable
with independent marginal p(ε) and gφ(·) is some vector-valued function parameterized by φ. Hence the
Monte Carlo estimates is now differentiable w.r.t. φ and backpropagation can be used in order to tune the
parameters of the model.

5. A valid reparameterization would be z = µ+ σε. Indeed z follows a Gaussian distribution and the mean is
µ, while the variance is σ2V ar(ε) = σ2. Hence we obtain

EN (z;µ,σ2)[f(z)] = EN (ε;0,1)[f(µ+ σε)] ≈ 1
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where ε(l) ∼ N (0, 1).



6. Both networks are jointly trained to solve the optimization problem θ∗,Φ∗ = argmaxθ,Φ L(x(i), θ,Φ). In a
VAE the encoder network optimizes the regularizer term, by making the approximte posterior distribution
qΦ close to the latent variable prior. We then sample a latent sample z ∼ qΦ and pass it to the decoder
network. The decoder network then produces samples x̂ that maximize the reconstruction quality with
respect to the original input. As both terms of the ELBO are differentiable, we can use a training method
like SGD to train the VAE model end-to-end.
Classical autoencoders learn a deterministic function that compresses the data while variational autoencoders
(VAEs) learn the parameters of a probability distribution representing the data. Since VAEs learn to model
the data, we can sample from the distribution and generate new input data samples. Hence, VAEs are
generative models.

7. We proceed by integrating the two terms of the difference under the integral separately, and then plugging
back into the definition of the Kullback-Leibler divergence DKL:∫
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Since the posterior approximation is a multivariate Gaussian distribution with diagonal covariance (Σ),
each dimension is independent and the log-likelihood becomes a sum of log-likelihoods per dimension
parameterized by µj and σ2

j
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which yields the desired result.
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Problem 2 (Variational autoencoder):

The solution is provided in the notebook solution09.ipynb.

1. See code.

2. Figure 1a shows the latent space of a standard autoencoder. The space looks somewhat structured (similar
digits are close to each other in the latent space), but it is unclear how to sample from this space, as some
clusters are very scattered.

3. We just need to add some extra outputs to the encoder, for the variances (assuming a diagonal Gaussian).
For D dimensions, we need 2D outputs (D means and D variances). The decoder does not need to be
modified, as it takes an individual sample as input.

4. We can formulate the reparameterization trick as z = µ(x) +σ(x)ε, where ε is a sample from N (0, I), and
µ(x), σ(x) are the outputs of the encoder. This way, we can backpropagate through µ and σ. Predicting the
full covariance matrix would require O(D2) parameters (for D dimensions), which is impractical. Instead,
if we restrict ourselves to a diagonal covariance matrix we only need O(D) parameters.

5. See code.

6. The latent space is depicted in Figure 1b. Compared to the standard autoencoder, the latent space of the
variational version is more structured and compact, and makes it easier to sample from it.

7. To generate, we just sample a random z from N (0, I) and decode it.

(a) Autoencoder (b) Variational autoencoder

Figure 1: Comparison between the latent space of a standard autoencoder and the latent space of a variational
autoencoder. The MNIST digits are compressed to 2 dimensions.
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