Matrix Reconstruction & Approximation Part II: Nuclear Norm Relaxation

> Calin Cruceru ccruceru@inf.ethz.ch

ETH Zurich – <cil.inf.ethz.ch> March 20, 2020

Recall: Problem Statement

- ► Given a matrix $A \in \mathbb{R}^{m \times n}$ with observed entries $\mathcal{I} \subseteq [m] \times [n]$
- \triangleright Goal: fill in the unobserved entries
- **Assumption** ("learnability"): A can be explained by fewer than $m \times n$ parameters

$$
\textcolor{red}{\blacktriangleright} \; \exists \; (\textbf{U} \in \mathbb{R}^{m \times k}, \textbf{V} \in \mathbb{R}^{n \times k}) \; \text{such that} \; \textbf{A} \approx \textbf{U} \textbf{V}^\top
$$

Recall: Formalizations

 \blacktriangleright Low-rank matrix recovery

$$
\min_{\mathbf{X} \in \mathbb{R}^{m \times n}} \|\mathbf{A} - \mathbf{X}\|_{\mathcal{I}}^{2} \qquad \textbf{(P1)}
$$
\nsubject to $\text{rank}(\mathbf{X}) \leq k$

 \blacktriangleright Exact matrix recovery

$$
\min_{\mathbf{X} \in \mathbb{R}^{m \times n}} \text{rank}(\mathbf{X}) \qquad \textbf{(P2)}
$$
\n
$$
\text{subject to } \|\mathbf{A} - \mathbf{X}\|_{\mathcal{I}} = 0
$$

 \triangleright Both are NP-hard \rightarrow require approximations!

 \blacktriangleright Last time: re-parametrized (P1) as

 $\{X \in \mathbb{R}^{m \times n} : \text{rank}(X) \leq k\} = \{UV^{\top} : U \in \mathbb{R}^{m \times k}, V \in \mathbb{R}^{n \times k}\}$

and used Alternating Least Squares.

Convex Relaxation of $\text{rank}(\mathbf{X})$

 \blacktriangleright Tightest lower-bound

 $rank(X) \geq ||X||_*$ for $||X||_2 \leq 1$.

Intuition: L_1 norm as the relaxation of the L_0 "norm"

Figure: source: <https://arxiv.org/abs/1712.01312>

Inequality Proof (Problem 1.1)

First, recall that multiplying a matrix by an invertible matrix maintains its rank,

$$
rank(\mathbf{XY}) = rank(\mathbf{ZX}) = rank(\mathbf{X})
$$

\n
$$
\forall \mathbf{Y} \in \mathbb{R}^{n \times n}, \text{ rank}(\mathbf{Y}) = n
$$

\n
$$
\forall \mathbf{Z} \in \mathbb{R}^{m \times m}, \text{ rank}(\mathbf{Z}) = m
$$

Then, with $A = UDV^{\top}$,

$$
rank(\mathbf{A}) = rank(\mathbf{UDV}^{\top}) = rank(\mathbf{D}) = \#\{\sigma_i > 0\}.
$$

We also have that $\|\mathbf{A}\|_2 = \sigma_{\text{max}}(\leq 1)$, so $\sigma_i \leq 1$ for all *i*. Thus,

$$
rank(\mathbf{A}) = \#\{\sigma_i > 0\} = \sum_{i:\sigma_i > 0} 1 \ge \sum_{i:\sigma_i > 0} \sigma_i = \sum_i \sigma_i = \|\mathbf{A}\|_*.
$$

Convexity Proof (Problem 1.2)

The lazy (and more insightful) way:

1. Show that $\|\mathbf{A}\|_*$ is a norm

- \triangleright (i) $||aA||_* = |a|||A||_*$ (absolute homogeneous) and (ii) $\|\mathbf{A}\|_{*} = 0 \iff \mathbf{A} = \mathbf{0}$ (positive definite) are trivial
- **IF** Show triangle inequality! (iii) $\|\mathbf{A} + \mathbf{B}\|_{*} \le \|\mathbf{A}\|_{*} + \|\mathbf{B}\|_{*}$

2. Show that all norms are convex,

$$
\|\lambda x + (1 - \lambda) y\| \le \|\lambda x\| + \|(1 - \lambda) y\| = \lambda \|x\| + (1 - \lambda) \|y\|,
$$

by triangle inequality and absolute homogeneity.

The definition-based approach: show that

$$
\|\lambda \mathbf{A} + (1-\lambda)\mathbf{B}\|_* \leqslant \lambda \|\mathbf{A}\|_* + (1-\lambda)\|\mathbf{B}\|_*
$$

for all $\lambda \in [0, 1]$ and $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{m \times n}$.

Convexity Proof (Problem 1.2)

Goal: Show that triangle inequality holds!

First, show that the nuclear and spectral norms are dual,¹

$$
\|\bm{A}\|_* = \sup_{\bm{X}: \|\bm{X}\|_2 \leqslant 1} \langle \bm{X}, \bm{A} \rangle = \sup_{\sigma_1(\bm{X}) \leqslant 1} \mathrm{Tr}\, \bm{X}^\top \bm{A}.
$$

Let $\mathsf{A} = \mathsf{UDV}^\top = \sum_i \sigma_i \mathsf{u}_i \mathsf{v}_i^\top.$ We will show that

$$
\sum_i \sigma_i \geqslant \sup_{\sigma_1(\mathbf{X}) \leqslant 1} \langle \mathbf{X}, \mathbf{A} \rangle \quad \text{and} \quad \sum_i \sigma_i \leqslant \sup_{\sigma_1(\mathbf{X}) \leqslant 1} \langle \mathbf{X}, \mathbf{A} \rangle.
$$

We show the easier " \geq " inequality first:

$$
\sup_{\sigma_1(\mathbf{X}) \leq 1} \mathrm{Tr} \, \mathbf{X}^\top \mathbf{A} \overset{\mathbf{X}^\perp = \mathbf{U} \mathbf{V}^\top}{\geq} \mathrm{Tr} \, \mathbf{V} \mathbf{U}^\top \mathbf{U} \mathbf{D} \mathbf{V}^\top = \mathrm{Tr} \, \mathbf{D} = \sum_i \sigma_i.
$$

 $\frac{1}{\pi}$ https://en.wikipedia.org/wiki/Dual_norm

Convexity Proof (Problem 1.2) - cont.(1) We now prove the " \leq " inequality: sup $\langle \mathsf{X},\mathsf{A} \rangle = \mathsf{sup} \ \mathrm{Tr}\, \mathsf{X}$ $\sigma_1(\mathsf{X})\leqslant 1\qquad\qquad \sigma_1(\mathsf{X})\leqslant 1$ (matrix inner product) $=$ sup $\text{Tr} \, \mathsf{D} \mathsf{V}^\top \mathsf{X}$ $\sigma_1(\mathsf{X})\leq 1$ (trace cyclicity) $=$ sup $\sigma_1(\mathsf{X}){\leqslant}1$ \sum i $\sigma_i\mathsf{u}_i^\top$ $(trace def., diag. D)$ \leqslant sup $\sigma_1(\mathsf{X}){\leqslant}1$ $\max_{\|{\bf u}\|=\|{\bf v}\|=1}$ \sum i σ_i u $^\top$ Xv (upper bound) $=$ sup $\sigma_1(\mathsf{X}){\leqslant}1$ \sum i (largest sing. val.) $= (\sum$ i σ_i) sup $\sigma_1(\mathsf{X}){\leqslant}1$ (factor out const.) $=$ \sum i σ_i .

Convexity Proof (Problem 1.2) - cont.(2)

Hence, we have

$$
\|\mathbf{X}\|_{*}=\sup_{\mathbf{X}:\|\mathbf{X}\|_{2}\leqslant 1}\langle \mathbf{X},\mathbf{A}\rangle=\sum_{i}\sigma_{i}(\mathbf{A}).
$$

Then,

$$
\|\mathbf{A} + \mathbf{B}\|_{*} = \sup_{\sigma_{1}(\mathbf{X} \leq 1)} \langle \mathbf{X}, \mathbf{A} + \mathbf{B} \rangle
$$

= $\sup_{\sigma_{1}(\mathbf{X} \leq 1)} \langle \mathbf{X}, \mathbf{A} \rangle + \langle \mathbf{X}, \mathbf{B} \rangle$
 $\leq \sup_{\sigma_{1}(\mathbf{X} \leq 1)} \langle \mathbf{X}, \mathbf{A} \rangle + \sup_{\sigma_{1}(\mathbf{X} \leq 1)} \langle \mathbf{X}, \mathbf{B} \rangle$
= $\|\mathbf{A}\|_{*} + \|\mathbf{B}\|_{*}.$

Therefore, $\|\mathbf{A}\|_*$ respects triangle inequality, so it is a norm. Hence it is convex.

Relaxed Optimization Problems

 \triangleright We have the following convex relaxation of (P2)

$$
\min_{\mathbf{X} \in \mathbb{R}^{m \times n}} \|\mathbf{X}\|_{*} \qquad \textbf{(P2r)}
$$
\nsubject to
$$
\|\mathbf{A} - \mathbf{X}\|_{\mathcal{I}} = 0
$$

 \blacktriangleright ... and of $(P1)$

$$
\min_{\mathbf{X} \in \mathbb{R}^{m \times n}} \|\mathbf{A} - \mathbf{X}\|_{\mathcal{I}}^{2} \quad \text{(P1r)}
$$
\nsubject to
$$
\|\mathbf{X}\|_{*} \leq k
$$

 \blacktriangleright Note the following:

- ► the set $\{X \in \mathbb{R}^{m \times n} : ||A X||_{\mathcal{I}} = 0\}$ is a convex set (check it!)
- the function $g(\mathbf{X}) = \|\mathbf{A} \mathbf{X}\|_2^2$ is convex

In hint: show that $\|\mathbf{X}\|_{\mathcal{I}}$ is a seminorm $(\|\mathbf{X}\|_{\mathcal{I}} = 0$ does not imply $X = 0$; it does not influence the convexity proof on slide 6)

Two Further Questions

- 1. (Q1) How well do the relaxed versions approximate the solutions to the original problems?
- 2. (Q2) Can we speed up the minimization of the relaxed formulations?

Theoretical Guarantees for Nuclear Norm Minimization (Q1)

IF For most matrices **A** of rank k , a minimum X^* of (P2r) perfectly recovers A provided that the number of observed entries satifies

 $|\mathcal{I}| \geqslant Ckn^{6/5}\log n.$

- ▶ Note: X^{*} is not necessarily low-rank (empirically, it is).
- ▶ "Exact Matrix Completion via Convex Optimization", Candes & Recht, <https://arxiv.org/abs/0805.4471>

 \blacktriangleright Later improved to

$$
|\mathcal{I}| \geqslant C \mu^4 k^2 n \log^2 n,
$$

with a new assumption on the incoherence parameter μ .

▶ "The Power of Convex Relaxation: Near-Optimal Matrix Completion", Candes & Tao, <https://arxiv.org/abs/0903.1476>

Efficient Implementation (Q2)

 \blacktriangleright The shrinkage operator

$$
\mathcal{D}_{\tau}(\mathbf{Y}) = \underset{\mathbf{X}}{\text{arg min}} \left\{ \frac{1}{2} \|\mathbf{X} - \mathbf{Y}\|_{\mathcal{F}}^2 + \tau \|\mathbf{X}\|_{*} \right\}
$$

has the closed-form solution

$$
\mathcal{D}_{\tau}(\mathbf{Y}) = \mathbf{U}\mathcal{D}_{\tau}(\mathbf{D})\mathbf{V}^{\top}, \text{ with } \mathcal{D}_{\tau}(\mathbf{D}) = \text{diag}\{(\sigma_i - \tau)_{+}\}.
$$

 \blacktriangleright The SVD Thresholding algorithm:

- 1. Input: **A** with observed entries in Ω
- 2. Initialize $Y_0 = 0$

3. For
$$
k = 1, 2, ..., K
$$
 do:

3.1
$$
\mathbf{X}^{(k)} = \mathcal{D}_{\tau}(\mathbf{Y}^{(k-1)})
$$

3.2
$$
\mathbf{Y}^{(k)} = \mathbf{Y}^{(k-1)} + \delta_k \mathcal{P}_{\Omega}(\mathbf{A} - \mathbf{X}^{(k)})
$$

4. Output: $X^{(K)}$

Efficient Implementation (Q2) - cont.

In Can show that the sequence $\{X^{(k)}\}$ **converges to the unique** solution of

$$
\min_{\mathbf{X} \in \mathbb{R}^{m \times n}} \tau \|\mathbf{X}\|_{*} + \frac{1}{2} \|\mathbf{X}\|_{F}^{2}
$$
\nsubject to $\mathcal{P}_{\Omega}(\mathbf{A} - \mathbf{X}) = \mathbf{0}$

- **IF** The constraint is the same as $||\mathbf{A} \mathbf{X}||_T = 0$ (prev. notation) \triangleright Notice the similarity to (P2r)
	- \triangleright Not exactly the same, but more computationally efficient due to the sparsity of $\mathsf{Y}^{(k)}$ and the (empirically observed) low rank of $\mathsf{X}^{(k)}$.

 \blacktriangleright "A Singular Value Thresholding Algorithm for Matrix Completion", Candes et. al., <https://arxiv.org/abs/0810.3286>