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Recall: Problem Statement

I Given a matrix A ∈ Rm×n with observed entries I ⊆ [m]× [n]

I Goal: fill in the unobserved entries
I Assumption (“learnability”): A can be explained by fewer than

m × n parameters
I ∃ (U ∈ Rm×k ,V ∈ Rn×k) such that A ≈ UV>
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Recall: Formalizations

I Low-rank matrix recovery

min
X∈Rm×n

‖A− X‖2I (P1)

subject to rank(X) 6 k

I Exact matrix recovery

min
X∈Rm×n

rank(X) (P2)

subject to ‖A− X‖I = 0

I Both are NP-hard → require approximations!
I Last time: re-parametrized (P1) as

{X ∈ Rm×n : rank(X) ≤ k} = {UV> : U ∈ Rm×k ,V ∈ Rn×k}

and used Alternating Least Squares.
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Convex Relaxation of rank(X)

I Tightest lower-bound

rank(X) > ‖X‖∗ for ‖X‖2 6 1.

I Intuition: L1 norm as the relaxation of the L0 “norm”

Figure: source: https://arxiv.org/abs/1712.01312
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Inequality Proof (Problem 1.1)

First, recall that multiplying a matrix by an invertible matrix
maintains its rank,

rank(XY) = rank(ZX) = rank(X)

∀ Y ∈ Rn×n, rank(Y) = n

∀ Z ∈ Rm×m, rank(Z) = m

Then, with A = UDV>,

rank(A) = rank(UDV>) = rank(D) = #{σi > 0}.

We also have that ‖A‖2 = σmax(6 1), so σi 6 1 for all i . Thus,

rank(A) = #{σi > 0} =
∑
i :σi>0

1 ≥
∑
i :σi>0

σi =
∑
i

σi = ‖A‖∗.
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Convexity Proof (Problem 1.2)

The lazy (and more insightful) way:
1. Show that ‖A‖∗ is a norm

I (i) ‖aA‖∗ = |a|‖A‖∗ (absolute homogeneous) and
(ii) ‖A‖∗ = 0 ⇐⇒ A = 0 (positive definite) are trivial

I Show triangle inequality! (iii) ‖A + B‖∗ 6 ‖A‖∗ + ‖B‖∗
2. Show that all norms are convex,

‖λx + (1− λ)y‖ 6 ‖λx‖+ ‖(1− λ)y‖ = λ‖x‖+ (1− λ)‖y‖,

by triangle inequality and absolute homogeneity.

The definition-based approach: show that

‖λA + (1− λ)B‖∗ 6 λ‖A‖∗ + (1− λ)‖B‖∗

for all λ ∈ [0, 1] and A,B ∈ Rm×n.
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Convexity Proof (Problem 1.2)

Goal: Show that triangle inequality holds!

First, show that the nuclear and spectral norms are dual,1

‖A‖∗ = sup
X:‖X‖261

〈X,A〉 = sup
σ1(X)61

TrX>A.

Let A = UDV> =
∑

i σiuiv
>
i . We will show that∑

i

σi > sup
σ1(X)61

〈X,A〉 and
∑
i

σi 6 sup
σ1(X)61

〈X,A〉.

We show the easier “>” inequality first:

sup
σ1(X)61

TrX>A
X !

=UV>
> TrVU>UDV> = TrD =

∑
i

σi .

1https://en.wikipedia.org/wiki/Dual_norm
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Convexity Proof (Problem 1.2) - cont.(1)
We now prove the “6” inequality:

sup
σ1(X)61

〈X,A〉 = sup
σ1(X)61

TrX>UDV> (matrix inner product)

= sup
σ1(X)61

TrDV>X>U (trace cyclicity)

= sup
σ1(X)61

∑
i

σiu>i Xvi (trace def., diag. D)

6 sup
σ1(X)61

max
‖u‖=‖v‖=1

∑
i

σiu>Xv (upper bound)

= sup
σ1(X)61

∑
i

σiσ1(X) (largest sing. val.)

=
(∑

i

σi

)
sup

σ1(X)61
σ1(X) (factor out const.)

=
∑
i

σi .
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Convexity Proof (Problem 1.2) - cont.(2)

Hence, we have

‖X‖∗ = sup
X:‖X‖261

〈X,A〉 =
∑
i

σi (A).

Then,

‖A + B‖∗ = sup
σ1(X61

〈X,A + B〉

= sup
σ1(X61

〈X,A〉+ 〈X,B〉

6 sup
σ1(X61

〈X,A〉+ sup
σ1(X61

〈X,B〉

= ‖A‖∗ + ‖B‖∗.

Therefore, ‖A‖∗ respects triangle inequality, so it is a norm.
Hence it is convex.
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Relaxed Optimization Problems

I We have the following convex relaxation of (P2)

min
X∈Rm×n

‖X‖∗ (P2r)

subject to ‖A− X‖I = 0

I ... and of (P1)

min
X∈Rm×n

‖A− X‖2I (P1r)

subject to ‖X‖∗ 6 k

I Note the following:
I the set {X ∈ Rm×n : ‖A−X‖I = 0} is a convex set (check it!)
I the function g(X) = ‖A− X‖2I is convex

I hint: show that ‖X‖I is a seminorm (‖X‖I = 0 does not imply
X = 0; it does not influence the convexity proof on slide 6)
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Two Further Questions

1. (Q1) How well do the relaxed versions approximate the
solutions to the original problems?

2. (Q2) Can we speed up the minimization of the relaxed
formulations?

11 / 14



Theoretical Guarantees for Nuclear Norm Minimization (Q1)
I For most matrices A of rank k , a minimum X∗ of (P2r)

perfectly recovers A provided that the number of observed
entries satifies

|I| > Ckn6/5 log n.

I Note: X∗ is not necessarily low-rank (empirically, it is).
I “Exact Matrix Completion via Convex Optimization”, Candes

& Recht, https://arxiv.org/abs/0805.4471

I Later improved to

|I| > Cµ4k2n log2 n,

with a new assumption on the incoherence parameter µ.
I “The Power of Convex Relaxation: Near-Optimal Matrix

Completion” , Candes & Tao,
https://arxiv.org/abs/0903.1476
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Efficient Implementation (Q2)

I The shrinkage operator

Dτ (Y) = arg min
X

{1
2
‖X− Y‖2F + τ‖X‖∗

}
has the closed-form solution

Dτ (Y) = UDτ (D)V>, with Dτ (D) = diag{(σi − τ)+}.

I The SVD Thresholding algorithm:
1. Input: A with observed entries in Ω
2. Initialize Y0 = 0
3. For k = 1, 2, . . . ,K do:

3.1 X(k) = Dτ (Y(k−1))
3.2 Y(k) = Y(k−1) + δkPΩ(A− X(k))

4. Output: X(K)
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Efficient Implementation (Q2) - cont.

I Can show that the sequence {X(k)} converges to the unique
solution of

min
X∈Rm×n

τ‖X‖∗ +
1
2
‖X‖2F

subject to PΩ(A− X) = 0

I The constraint is the same as ‖A− X‖I = 0 (prev. notation)
I Notice the similarity to (P2r)

I Not exactly the same, but more computationally efficient due
to the sparsity of Y(k) and the (empirically observed) low rank
of X(k).

I “A Singular Value Thresholding Algorithm for Matrix
Completion”, Candes et. al.,
https://arxiv.org/abs/0810.3286
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