
Computational Intelligence Laboratory

Tutorial session 6

LDA and word embeddings

Antonio Orvieto

ETH Zurich – cil.inf.ethz.ch

28 March 2020

cil.inf.ethz.ch

Section 1

Latent Dirichlet Allocation

pLSA (model)

I each document = specific mix of topics (colors): p(z |d)

I each topic (color) = specific distribution of words: p(w |z)

p(w |d) =
∑
z

p(w , z |d) =
∑
z

p(w |d , z)p(z |d)
∗
=
∑
z

p(w |z)p(z |d)

Parameters: matrices U and V , containing probability distributions
(probabilities of topics given a specific document and of words
given a specific topic).
Optimized with EM (see lecture..)

Exercise 1: Limitations of pLSA

I p(z |d) learned only for documents on which model is trained.
Not a well-defined generative model.
How to sample new document?

I Need to be able to sample topic weights ui = (u1i , . . . , uKi)
>

for a new document. Combine with existing V to predict di .
I pLSA has no good way to provide a new ui Thus, pLSA has to

use a heuristic: new document is ”folded in” and EM is re-run
(holding the old parameters fixed) to estimate the topic
proportion parameter for this new document.

I number of parameters grows linearly with corpus.

The topics simplex and the Dirichlet distribution
ui contains probabily of each topic for document i . Instead of
learning it (for each i) as a parameter, can we instead generate it
from a meaningful distribution?

p(ui |α) =
1

B(α)

K∏
z=1

uαz−1
zi . B(α) =

∏k
z=1 Γ(αz)

Γ(
∑k

z=1 αz)

distribution of 3 topic, for a chosen hyperparameter α,
https://towardsdatascience.com/dirichlet-distribution-a82ab942a879

From original paper: The Dirichlet is a convenient distribution on the simplex — it is in the exponential family, has
finite dimensional sufficient statistics, and is conjugate to the multinomial distribution.

https://towardsdatascience.com/dirichlet-distribution-a82ab942a879

http://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf

http://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf

Exercise 1 (ii): Conjugate prior of multinomial distribution

I Multinomial distribution. Consider a simplified setting:

I total of N words in our dictionary, and we pick (with
replacement) Li words to form document di ;

I order of the words does not matter: document summarized in
vector xi , where xij counts occurrence of word j in document i ;

I probability of word j in document i is πij .

Simple combinatorics give (i.e. not an assumption)

p(xi |πi) =
Li !∏
j xij !

N∏
j=1

π
xij
ij , xi ∼ Multi(πi).

I If πi ∼ Dir(αi), then something magic happens to the posterior..

p(πi |xi , α) ∝ p(xi |πi)p(πi |αi)

=

 Li !∏
j xij !

N∏
j=1

π
xij
ij

 1

B(αi)

N∏
j=1

π
αij−1
ij

 ∝ N∏
j=1

π
xij+αij−1
ij .

⇒ posterior also going to be Dirichlet, with parameter xi + αi .

Data likelihood under the Latent Dirichlet allocation

I we sample ui = (u1i , . . . , uKi) ∼ Dir(α) and a document lenght Li ,
described as vector xi (bag-of-words), where xij is count of word j .

I The observation model picked to be a standard multinomial :

p (xi |V , ui) =
Li !∏
j xij !

∏
j

π
xij
ij , πij :=

K∑
z=1

vzjuzi .

πij is the probability that wj sampled, given mixture of topics ui .

I Finally, we integrate out (i.e. get rid of) ui and get the likelihood.

p (xi |V , α) =

∫
p (x |V , ui) p(ui |α)dui

=
1

B(α)

∫ (∏
z

uαz−1
zi

) Li !∏
j xij !

∏
j

π
xij
ij

 dui .

Evaluation intractable due to coupling between ui and V .

I Using approximate inference (Gibbs sampling etc) and properties
such as conjugacy, one can get a way to infer V from the corpus.

Exercise 1 (iii): So, is LDA superior?
More pros of LDA:

I pLSA is shown to be more susceptible to overfitting than LDA for
small datasets;

I the Dirichlet prior acts as a regularizer on the topics distribution;

I model is theoretically sound and motivated;

But..

I If your corpus is fixed, not clear one would need a generative model
(even though it might be elengant);

I pLSA is far more easy to implement, used more often in industry;

I pLSA and LDA often achieve comparable performance;

I the hyperparameter α, if chosen in a wrong way, can make LDA way
worse that pLSA.

Investigating task performance of probabilistic topic models: an empirical study of pLSA and LDA
by Yue Lu, Qiaozhu Mei, ChengXiang Zhai

https://link.springer.com/content/pdf/10.1007/s10791-010-9141-9.pdf

https://link.springer.com/content/pdf/10.1007/s10791-010-9141-9.pdf

Section 2

Word Embeddings

What is an embedding? how is this useful?

I Lately, we discussed how to represent and discover topics in a corpus of
documents. Key problem in information retrieval;

I Now, we want to learn a semantic representation (i.e. embedding) of
words, so we can perform tasks in NLP.

Fundamentals:

I meaning of a word only depends on its use in language (Wittgenstein,
1953);

I our embedding of a word should summarize use we make of such word..
which also depends on all relations among all other words;

I can get a bit mind-bending.. especially since vocabularies are finite!
Similar concepts led in philosophy to (post-)structuralism.

... the central signified, the original or transcendental signified, is never
absolutely present outside a system of differences. The absence of the
transcendental signified extends the domain and the interplay of signification
ad infinitum.

– Derrida

Signifier is the sound associated with or image of something (e.g., a tree), the signified is the idea or concept of the
thing (e.g., the idea of a tree), and the sign is the object that combines the signifier and the signified into a
meaningful unit. http://oregonstate.edu/instruct/theory/signs.html

http://oregonstate.edu/instruct/theory/signs.html

Context Model Likelihood
Suppose we want to learn an embedding from a text w of length T .
For each word v ∈ V we want to learn a vector representation xv , able to
predict how v is used.

step 1) Given a window I = {−R, . . . ,−1, 1, . . . ,R}, the likelihood of w is

L(θ; w) =
T∑
t=1

∑
4∈I

log pθ(w (t+4) |w (t)).

step 2) Introduce a similarity measure (log-bilinear model)

log pθ(w |w ′) = 〈xw , xw ′〉+ bw + const.

step 3) Compute the normalizing constant and give a final formula for the
log-likelihood

L(θ; w) =
T∑
t=1

∑
4∈I

[
bw (t+4) +〈xw (t+4) , xw (t)〉−log

∑
v∈V

exp [〈xv , xw (t)〉+ bv]
]
.

step 4) A useful first modification is to introduce input-output embeddings
(and to modify the cost accordingly)

log pθ(w |w ′) = 〈xw , yw ′〉+ bw .

step 5) (Exercise 3(i)) Realize that this likelihood is actually a scary
monster... how can we optimize it?! Computing gradient of the
normalization constant intractable (involves sum over dictionary).

∂

∂xv
log

(∑
w ′∈V

exp[〈xw ′ , yw 〉]

)
=

exp(〈yw , xv 〉)∑
w ′∈V exp(〈yw ′ , xv 〉)

yw .

Therefore, we need to modify this likelihood so that it is tractable
to optimize with stochastic gradient descent.

(Exercise 3) Negative sampling

Main idea: a good embedding yields a classifier between semantically
similar/non-similar words..

I observed (positive) pairs =⇒ positive training examples 4+.

I random (negative) pairs=⇒ negative training examples 4−.

Therefore we may just perform logistic regression, σ(z) := 1
1+exp(−z) ,

i.e. maximize (ignoring bias)

L(θ) =
∑

(i,j)∈4+

log σ(〈xi , yj〉) +
∑

(i,j)∈4−
log σ(−〈xi , yj〉).

I computation does not depend on |V| and should be fast enough to
allow for cheap gradient updates.

I the overall gradient is completely decoupled into a sum, thus one
can update the objective in sampled batches of the data.

(Exercise 4) GloVe
Main idea: why don’t we just try to match the co-occurrence count of
two words with the log-bilinear model?

I Data is organized in a matrix

N = (nij) ∈ N|V|·|C|,

nij = # occurrences of wi ∈ V in context of wj ∈ C

I The GloVe cost is

H(θ; N) =
∑
i,j

f (nij)

log nij︸ ︷︷ ︸
target

− log p̃θ(wi |wj)︸ ︷︷ ︸
model

2

,

p̃θ(wi |wj) = exp [〈xi , yj〉+ bi + cj] ,

where f (nij)→ 0 as nij → 0, and saturates, to decrease effect of
rare/too frequent words.

I Cost can be optimized very efficiently with SGD!

xnew
i ← xi + 2ηf (nij) (log nij − 〈xi , yj〉) yj

ynew
j ← yj + 2ηf (nij) (log nij − 〈xi , yj〉) xi

	Latent Dirichlet Allocation
	Word Embeddings

