
K-means Clustering
and Gaussian Mixture Models

ETH Zürich

2–3 April 2020

K-means Clustering

The clustering problem

I Also known as vector quantization, depending on the
application.

I Consider N data points in a D-dimensional space, i.e. each
data point is a D-dimensional vector xn, n = 1, . . . ,N.

I Our goal is to partition the data set into K clusters.

I In other words, find K representative vectors (centroids)
u1, . . . ,uK, one for each cluster, that best fit the data
according to some distance metric.

(Some) applications of clustering

Compression
Semantic segmentation

Topic modeling Pattern recognition

K-means

One of the many vector quantization algorithms.
I Arguably the most famous and the simplest
I The distance metric is the squared Euclidean distance
I Not the Euclidean distance, which results in another

algorithm (K-medoids)

Objective
Minimize the cost function

J =
N∑

n=1

K∑
k=1

zk,n∥xn − uk∥22

I Data points: x1, . . . , xN ∈ RD

I Centroids: u1, . . . ,uK ∈ RD

I Assignments: z1, . . . , zN ∈ RK (with zk,n := (zn)k)

K-means constraints

Hard assignment constraints
Each point xn is assigned to exactly one cluster:
I z1, . . . , zN ∈ {0, 1}K
I ∑K

k=1 zk,n = 1, ∀n ∈ {1, . . . ,N}

In practice
I K-means builds a dictionary that maps code words to points

and vice versa.
I The assignment matrix Z can be just implemented as a list of

indices.

Challenges

I The objective function J is non-convex and assignments are
discrete

J =
N∑

n=1

K∑
k=1

zk,n∥xn − uk∥22

I Finding the global optimum is NP-Hard
I Only possible by brute-forcing all assignments
I Exception: 1D data (dynamic programming solution)

I In practice: local minima are good enough.

K-means algorithm (initialization)

1. Initialize centroids u(0)
1 , . . . ,u(0)

K and t← 1.

(a)

−2 0 2

−2

0

2

K-means algorithm (E step)
2. Cluster assignment (assign points to nearest centroid).

k∗(xn) = argmin
k∈{1,...,K}

∥xn − u(t−1)
k ∥22, ∀n ∈ {1, . . . ,N}

z(t)j,n =

{
1 , if j = k∗(xn)
0 , otherwise , ∀n ∈ {1, . . . ,N}

(b)

−2 0 2

−2

0

2

K-means algorithm (M step)
3. Centroid update.

u(t)
k =

∑N
n=1 z(t)k,nxn∑N

n=1 z(t)k,n
, ∀k ∈ {1, . . . ,K}

4. If termination condition (u(t)
k = u(t−1)

k , ∀k) is not met,
t← t + 1 and go to step 2.

(c)

−2 0 2

−2

0

2

K-Means: Second E-Step

(d)

−2 0 2

−2

0

2

K-Means: Second M-Step

(e)

−2 0 2

−2

0

2

Practical considerations

I Convergence to local minimum guaranteed

I Quadratic convergence rate
I Equivalent to Newton’s method
I In principle, J can also be optimized via (stochastic) gradient

descent

I Computational cost: O(nkd) per iteration

I Issues: convergence to poor minima (less likely with good
initialization), empty clusters. A mitigation is to take the best
result out of multiple runs.

Bad initialization

Bad initialization

K-Means derivation / convergence proof

Strategy
Prove that steps 2 (E step) and 3 (M step) always result in a
decrease (or no change) of the objective function J.
I E step: cluster centroids are fixed, assignments change
I M step: cluster centroids change, assignments are fixed
I What is the minimizer (optimal strategy) of each step?

J =
N∑

n=1

K∑
k=1

zk,n∥xn − uk∥22

K-Means derivation / convergence proof

E step
Objective function J minimized by definition, since we assign each
point to the nearest centroid.

k∗(xn) = argmin
k∈{1,...,K}

∥xn − u(t−1)
k ∥22, ∀n ∈ {1, . . . ,N}

z(t)j,n =

{
1 , if j = k∗(xn)
0 , otherwise , ∀n ∈ {1, . . . ,N}

K-Means derivation / convergence proof

M step
Assuming that assignments zk,n are fixed (i.e. constants), how do
we find the optimal cluster centroids uk?

J =
N∑

n=1

K∑
k=1

zk,n∥xn − uk∥22

Strategy: derive gradient w.r.t. centroid uk, set it to zero, and
recover closed-form solution.
If we are out of luck (spoiler: we aren’t), we could still use gradient
descent.

K-Means derivation / convergence proof

M step

∇uk

(N∑
n=1

K∑
k=1

zk,n∥xn − uk∥22

)
= −2

N∑
n=1

zk,n(xn − uk)
!
= 0

⇒
N∑

n=1
zk,nxn − uk

N∑
n=1

zk,n = 0 ⇒ uk =

∑N
n=1 zk,nxn∑N

n=1 zk,n

To show that this is effectively a minimizer, we should also check
that the objective function is convex w.r.t. uk (given Z constant).

K-Means convergence (final)

I The value of the objective function J can only decrease or stay
equal at each step

I Therefore, the algorithm converges

I It must also terminate at some point, since cluster
assignments are finite

K-Means as a matrix factorization problem

K-Means solves the matrix factorization problem:

min ∥X−UZ∥2F

where Z is an indicator matrix.
Proof strategy
Show that the formulation above is equivalent to the original
objective function J under the constraints of Z

∥X−UZ∥2F
!
=

N∑
n=1

K∑
k=1

zk,n∥xn − uk∥22 = J

K-Means as a matrix factorization problem
Let’s expand the matrix norm...

∥X−UZ∥2F =
D∑

d=1

N∑
n=1

(
xd,n −

K∑
k=1

ud,kzk,n

)2

(1)

=
D∑

d=1

N∑
j=1

(K∑
k=1

zk,n(xd,n − ud,k)

)2

(2)

=
D∑

d=1

N∑
j=1

K∑
k=1

z2
k,n(xd,n − ud,k)

2 (3)

=
K∑

k=1

N∑
j=1

z2
k,n

D∑
d=1

(xd,n − ud,k)
2 (4)

=
K∑

k=1

N∑
n=1

zk,n∥xn − uk∥22 = J (5)

In (2) and (3), zk,n is 1 for only one k. In (5), z2
k,n = zk,n (binary).

Gaussian mixture models

K-means vs GMM

K-means limitations (or features?):
I Hard cluster assignments
I Spherical clusters with equal variance

What if...

Our data looks like:

Data vs. Distribution

I Data: input
I Distribution: model assumption

I ML methods usually make some general assumption about the
distribution (e.g. a parametric family) then try to obtain
(“infer”) the specifics from the data available.

I Example:
I Modeling step: Assume a Gaussian distribution as model

(parameterized by mean and variance)
I Inference Step: Estimate parameters mean & variance from

data.
I Gaussian Mixture Models can be intuitively understood as

generative models (you can sample from a GMM)

Gaussian Mixture Models
Assume data is generated from a weighted mixture of K Gaussian
distributions:

p(x) =
K∑

k=1
πkN (x|µk,Σk)

I Normalization and positivity require: πk ≥ 0,
∑K

k=1 πk = 1

Generation Process
I Sample k with probability πk.
I Sample x with probability N (x|µk,Σk).

Mixing Coefficients
The mixing coefficients (πk) can be interpreted as a prior prob.:

p(x) =
K∑

k=1
p(k)p(x | k)

Gaussian Distribution (d-D)
I Random vector X = (X1, . . . ,Xd) with X = Rd

I Probability density function

p(x) := 1
(2π) d

2 |Σ|
1
2
exp

(
−1

2(x− µ)⊤Σ−1(x− µ)

)
I E[X] = µ

I Σ is the covariance matrix of X and |Σ| is its determinant.

GMM - Parameters

K mixture components with parameters (for k = 1, . . . ,K):
I µk: mean of the k-th component (similar to centroid uk in

K-means)
I Σk: covariance matrix of the k-th component
I πk: mixture weight of the k-th component

Maximum likelihood estimation?

GMM - Objective

The likelihood of all the data is:

p(X | π,µ,Σ) =
N∏

n=1

(K∑
k=1

πkN (xn|µk,Σk)

)

Maximize the log-likelihood of the Gaussian mixture model:

L(X,π,µ,Σ) := ln p(X | π,µ,Σ) =
N∑

n=1
ln

{ K∑
k=1

πkN (xn | µk,Σk)

}

Log of a sum !
It is really hard to optimize with respect to µk and Σk. We need
to find another method to compute them!

GMM - Latent Variables
I Let’s introduce new variables zk, called latent variables, that

tell us which points come from which gaussian.
I Complete data

I For each data point x:

zk =

{
1 if x comes from k-th Gaussian component
0 otherwise

I Note:
∑K

k=1 zk = 1 and p(zk = 1) = πk.

GMM - Latent Variables

I For each data point we define z = (z1, z2, . . . , zK), where
zi = 0 for all i ̸= k, and zk = 1.

I Then the conditional distribution of x given a z is a Gaussian:

p(x|z) = p(x|zk = 1) = N (x|µk,Σk)

I Given z for each datapoint, the parameter inference is easy!

Complete Log-likelihood

I Remember: the likelihood for one data point x is:

p(x | πk,µk,Σk) =
K∑

k=1
πkN (x | µk,Σk)

I The complete likelihood for one data point x is:

p(x, z | πk,µ,Σ) =
K∏

k=1
[πkN (x | µk,Σk)]

zk

I The complete log-likelihood for the dataset X then is:

log p(X,Z | πk,µ,Σ) =
N∑

n=1

K∑
k=1

znk
(
log πk + logN (xn | µk,Σk)

)

The EM Algorithm - Key Idea

I The EM algorithm proposes instead to look at the expected
complete log-likelihood:

EZ
[
log p(X,Z | πk,µ,Σ)

]
=

N∑
n=1

K∑
k=1

γnk
(
log πk + logN (xn | µk,Σk)

)

I γnk is the posterior probability of the latent variables.

γnk = E(znk) = p(znk = 1) = p(zk = 1 | xn)

I Remember: the expectation of a binary variable is the
probability that it is equal to 1.

The EM Algorithm - Lower Bound
I Let’s find a lower-bound of the log-likelihood:

log p(X; θ) =
N∑

n=1
log

[K∑
k=1

πkpθk(xn)

]
=

N∑
n=1

log

[K∑
k=1

qnk
πk pθk(xn)

qnk

]

≥
N∑

n=1

K∑
k=1

qnk [log pθk(xn) + log πk − log qnk] = L(X; θ)

where qnk is any distribution s.t.
∑K

k=1 qnk = 1.

I In the last step, we used Jensen’s inequality

log

(∑
k

αkxk

)
≥
∑

k
αk log(xk)

The EM Algorithm - E-Step

I Given that we cannot directly maximize the log-likelihood, we
maximize its lower bound.

I The next step is to find the optimal q distribution that
maximizes this lower bound

I If this lower bound is the tightest, it represents a good
approximation of the log-likelihood

I Next slide: derivation

The EM Algorithm - E-Step derivation

Strategy: compute gradient w.r.t. qk, set it to 0, and try to find a
closed-form solution (as usual).
I This time we also need to add a Lagrange multiplier to

enforce
∑

k qk = 1

Objective (for a single data point x):

max
q

{ K∑
k=1

qk [log pθk(x) + log πk − log qk] + λ

((K∑
k=1

qk

)
− 1)

)}

∇qk = log pθk(x) + log πk − log qk −
qk
qk

+ λ
!
= 0

The EM Algorithm - E-Step derivation

(copied over from previous slide)

∇qk = log pθk(x) + log πk − log qk −
q
q + λ

!
= 0

Let’s continue...

log q∗k = log pθk(x) + log πk − 1 + λ ⇒ q∗k = pθk(x)πk eλ−1

To get rid of the term with λ, we take the sum of both sides and
exploit the normalization property:

K∑
k=1

qk︸ ︷︷ ︸
=1

=
K∑

k=1
pθk(x)πk eλ−1 ⇒ eλ−1 =

1∑K
k=1 pθk(x)πk

The EM Algorithm - E-Step derivation

Finally, you get the result you saw in the lecture (single point x):

q∗k =
πk pθk(x)∑K
l=1 πl pθl(x)

= p(zk = 1 | x)

Or, for each point xn:

q∗nk =
πk pθk(xn)∑K
l=1 πl pθl(xn)

= p(zk = 1 | xn) = γnk

I The optimal q–distribution is equal to the posterior probability
of the latent variables.

The EM Algorithm - M-Step

I Now we maximize the lower bound w.r.t. the parameters
(πk,µ,Σ), given γnk fixed.

I Let’s have a closer look at the lower bound with optimal q:

L(X; θ) =
N∑

n=1

K∑
k=1

γnk [log pθk(xn) + log πk − log γnk]

= EZ
[
log p(X,Z | θ)

]
−

N∑
n=1

K∑
k=1

γnk log γnk︸ ︷︷ ︸
constant

I Hence optimizing the lower bound L(X; θ) w.r.t. θ is equal to
maximizing the expected complete data log-likelihood
(same gradient).

EM Algorithm: M-Step

Strategy: same as before. Compute gradient w.r.t. πk,µ,Σ, set
them to 0, find closed-form solution (if it exists). Where needed
(πk), enforce the normalization constraint with a Lagrange
multiplier.

log p(X;π,µ,Σ) =
N∑

n=1

K∑
k=1

γnk
(
log πk + logN (xn | µk,Σk)

)

Example
Let’s try to derive the optimal mixing coefficients πk (next slide)

Example: optimal mixing coefficients

max
πk

{ N∑
n=1

K∑
k=1

γnk
(
log πk + logN (xn | µk,Σk)

)
+ λ

((K∑
k=1

πk

)
− 1
)}

∇πk =
N∑

n=1
γnk

1
πk

+ λ
!
= 0 ⇒ 1

πk

N∑
n=1

γnk = −λ ⇒ π∗
k =

∑N
n=1 γnk
−λ

As before, to find λ, let’s sum on both sides...
K∑

k=1
πk︸ ︷︷ ︸

=1

=
K∑

k=1

∑N
n=1 γnk
−λ

⇒ −λ =
N∑

n=1

K∑
k=1

γnk︸ ︷︷ ︸
=1︸ ︷︷ ︸

N

⇒ π∗
k =

∑N
n=1 γnk

N

The EM algorithm - Overview
1. Initialize π

(0)
k , µ(0)

k , Σ(0)
k for k = 1, . . . ,K and t← 1.

2. E-step. Update latent variables:

γnk :=
π
(t−1)
k N (xn | µ(t−1)

k ,Σ
(t−1)
k)∑K

j=1 π
(t−1)
j N (xn | µ(t−1)

j ,Σ
(t−1)
j)

3. M-step. Update parameters of the clusters:

µ
(t)
k :=

∑N
n=1 γnkxn∑N

n=1 qkn

Σ
(t)
k :=

1∑N
n=1 γnk

N∑
n=1

γnk(xn − µ
(t)
k)(xn − µ

(t)
k)T

π
(t)
k :=

1
N

N∑
n=1

γnk

4. If termination condition is not met, t := t + 1 and go to step
2.

K-means vs. mixture models

I K-means is a special case of GMMs!

I K-means
I Hard cluster assignments
I Spherical clusters with uniform prior
I Fast runtime (can be used to initialize a mixture model)

I Gaussian mixture models
I Soft cluster assignments ↔ probabilities of assignments
I Each cluster has its own covariance (Σk) and “weight” (πk)
I Slower runtime

I One is not necessarily better than the other. They both have
their use cases.

GMM: Initial configuration

(a)−2 0 2

−2

0

2

GMM: First E-Step

(b)−2 0 2

−2

0

2

GMM: First M-Step

(c)

L = 1

−2 0 2

−2

0

2

GMM: Two EM cycles

(d)

L = 2

−2 0 2

−2

0

2

GMM: Five EM cycles

(e)

L = 5

−2 0 2

−2

0

2

	K-means Clustering
	Gaussian mixture models
	Why EM works?

