K-means Clustering
and Gaussian Mixture Models

ETH Ziirich

2-3 April 2020



K-means Clustering



The clustering problem

» Also known as vector quantization, depending on the
application.

» Consider N data points in a D-dimensional space, i.e. each
data point is a D-dimensional vector x,, n=1,..., \.

» Our goal is to partition the data set into K clusters.
» In other words, find K representative vectors (centroids)

uy, ..., ug, one for each cluster, that best fit the data
according to some distance metric.



(Some) applications of clustering

gy

Topic modeling

Wsy  Wice Mroad [orss Wwoter Wby Mmoo Wt obi

Semantic segmentation

Pattern recognition



K-means

One of the many vector quantization algorithms.
» Arguably the most famous and the simplest
» The distance metric is the squared Euclidean distance

» Not the Euclidean distance, which results in another
algorithm (K-medoids)

Objective
Minimize the cost function

UkHz
n=1 k=1
» Data points: x3,...,xy € RD
» Centroids: u,...,ux € RP

» Assignments: zi,...,zy € RX (with Zkn :=(Zn)k)



K-means constraints

Hard assignment constraints

Each point x,, is assigned to exactly one cluster:
> z,...,zy € {0, 1}K
> K zn=1,Vne{l,...,N}

In practice
» K-means builds a dictionary that maps code words to points
and vice versa.

» The assignment matrix Z can be just implemented as a list of
indices.



Challenges

» The objective function J is non-convex and assignments are
discrete

K
J=3"" zinllxn — w3

n=1 k=1

» Finding the global optimum is NP-Hard

» Only possible by brute-forcing all assignments
» Exception: 1D data (dynamic programming solution)

P In practice: local minima are good enough.



K-means algorithm (initialization)

1. Initialize centroids ugo), R “SS) and t+ 1.
2t (@ R
.‘ -
X o
0 ° °% ‘




K-means algorithm (E step)

2. Cluster assignment (assign points to nearest centroid).

k*(xp) = argmin ||x, — ug(t_l)H%, Vne {1,...,N}
ke{l,...,K}
0 |1 ,ifj=k(xn)
Zjn = { 0 , otherwise V€l N}




K-means algorithm (M step)
3. Centroid update.
(0 Zrl)l=1 z(kf’nxn
u P A—

k N (1)
> n=1 Zk.n

, Vke {l,...,K}

4. If termination condition (uf(t) = ug(t_l), Vk) is not met,
t<+ t+ 1 and go to step 2.




K-Means: Second E-Step




K-Means: Second M-Step

2 I




Practical considerations

» Convergence to local minimum guaranteed

» Quadratic convergence rate

» Equivalent to Newton's method
» In principle, J can also be optimized via (stochastic) gradient
descent

» Computational cost: O(nkd) per iteration

> Issues: convergence to poor minima (less likely with good
initialization), empty clusters. A mitigation is to take the best
result out of multiple runs.



Bad initialization

. :.- .' ‘

L -
e® .. .‘

@: il TP

..
‘9 -
N‘ ..'
- *

* --:

.y



Bad initialization

e ek
‘e : . s
- ’. ~ o ...'
. .-.. -

.
* e
*
- ® .
]
-, %
. . *
.
s
. -

- .
- " -
.
-
-
- g



K-Means derivation / convergence proof

Strategy

Prove that steps 2 (E step) and 3 (M step) always result in a
decrease (or no change) of the objective function J.

P> E step: cluster centroids are fixed, assignments change
> M step: cluster centroids change, assignments are fixed

» What is the minimizer (optimal strategy) of each step?

N K
J=2 >zl — w3

n=1 k=1



K-Means derivation / convergence proof

E step

Objective function J minimized by definition, since we assign each
point to the nearest centroid.

K(xa) = argmin ||xo — ol V|3, ¥ne {1,..., N}
ke{l,...,K}

0 |1 ,ifj=k(xn)
Zjn = { 0 , otherwise ’ vne{l,.... N}



K-Means derivation / convergence proof

M step
Assuming that assignments zj ,, are fixed (i.e. constants), how do
we find the optimal cluster centroids u,?

N K
J=2 > 2wl — w3

n=1 k=1

Strategy: derive gradient w.r.t. centroid uy, set it to zero, and
recover closed-form solution.

If we are out of luck (spoiler: we aren't), we could still use gradient
descent.



K-Means derivation / convergence proof

M step

N K
Uk <Zzzk,onn - Uk”%) = —QZan — = 0

n=1 k=1

N N N
o _ 0 _ En:l Zk,nxn
= Zk.nXp — U Zkn = = ug = B
n=1 n=1 Zn:l Zk,n

To show that this is effectively a minimizer, we should also check
that the objective function is convex w.r.t. uy (given Z constant).



K-Means convergence (final)

» The value of the objective function J can only decrease or stay
equal at each step

» Therefore, the algorithm converges

» It must also terminate at some point, since cluster
assignments are finite



K-Means as a matrix factorization problem

K-Means solves the matrix factorization problem:
. 2
min || X — UZ||z

where Z is an indicator matrix.

Proof strategy

Show that the formulation above is equivalent to the original
objective function J under the constraints of Z

N K
|
IX=UZE=D > znllxn — s = J

n=1 k=1



K-Means as a matrix factorization problem
Let's expand the matrix norm...

|X — UZHF_ZZ (an Zudkzkn> (1)
d=1 n=1 . )
(Z Zn(Xd,n — Ud,k)) (2)

Mz

D
)3
d=1 j=1 \k=1
D N
= D Zenlxdn — ugn)? (3)
d=1 j=1 k=1
K N D
=332 (xdn— tak)’? (4)
k=1j=1  d=1
K N
= > zknlxa —udlz = J (5)

x
Il
—
I
-

n

In (2) and (3), zxn is 1 for only one k. In (5), zin = z), (binary).



Gaussian mixture models



K-means vs GMM

K-means limitations (or features?):

0.9

0.8

0.

o

0.6

0.5

0.4

0.3

0.2

0.1

» Hard cluster assignments

» Spherical clusters with equal variance

Different cluster analysis results on "mouse" data set:

Original Data

Jat %

I OO L

0.9

0.8

0.7

0.6

054

0.4

0.3

0.2

k-Means Clustering EM Clustering

01 02 03 04 05 06 07 0.8 09 1

0.1
01 02 03 04 05 0.6 0.7 0.8 0.9 1 0 01 02 03 04 05 06 07 0.8 09 1



What if...

Our data looks like:

®




Data vs. Distribution

» Data: input

» Distribution: model assumption

» ML methods usually make some general assumption about the
distribution (e.g. a parametric family) then try to obtain
(“infer”) the specifics from the data available.

> Example:

» Modeling step: Assume a Gaussian distribution as model
(parameterized by mean and variance)

» Inference Step: Estimate parameters mean & variance from
data.

» Gaussian Mixture Models can be intuitively understood as
generative models (you can sample from a GMM)



Gaussian Mixture Models

Assume data is generated from a weighted mixture of K Gaussian
distributions:

K
=Y mMN(xlpk i)

k=1
» Normalization and positivity require: 7y > 0, Z;le me=1

Generation Process
» Sample k with probability 7.
» Sample x with probability N'(x|gek, X).

Mixing Coefficients
The mixing coefficients (7x) can be interpreted as a prior prob.:

K
= p(k)p(x| k)

k=1



Gaussian Distribution (d-D)
» Random vector X = (X, ..., Xy) with X = R?

» Probability density function

p(x) = i

R SN PR
(zw)zmep( 0= 1) T )

> B[X] = p

» Y is the covariance matrix of X and |X| is its determinant.




GMM - Parameters

K mixture components with parameters (for k=1, ..., K):
» i mean of the k-th component (similar to centroid uy in
K-means)

> 3, covariance matrix of the k-th component

» 7. mixture weight of the k-th component

Maximum likelihood estimation?



GMM - Objective

The likelihood of all the data is:

N
p(X |, p,3) = H (Zﬂ-/\/ Xn!uk,zk))

k=

Maximize the log-likelihood of the Gaussian mixture model:

N K
LX, 7w, p,X) :=Inp(X| 7, pu,X) = Z In {Z TN (X0 | ek, Zk)}

n=1 k=1

Log of a sum !
It is really hard to optimize with respect to py and 3. We need
to find another method to compute them!



GMM - Latent Variables

» Let's introduce new variables z,, called latent variables, that
tell us which points come from which gaussian.
» Complete data

» For each data point x:

1 if x comes from k-th Gaussian component
k= .
0 otherwise

> Note: Z,’le zx=1and p(zx = 1) = 7.

0.5




GMM - Latent Variables

» For each data point we define z = (z1, zo, . . . , zk), where
zi=0forall i# k, and z, = 1.

» Then the conditional distribution of x given a z is a Gaussian:
p(xlz) = p(Xlz = 1) = N (xlpa, =)

» Given z for each datapoint, the parameter inference is easy!

N1 points N2 points N3 points

§§<§=£§\ + +
1

estimate estimate estimate estimate
pi_k=Nk/N mu_1, Sigma_1 mu_2, Sigma_2 mu_3, Sigma_3




Complete Log-likelihood

» Remember: the likelihood for one data point x is:

K
p(X ‘ Ty Mok, Zk) = Zﬂ'kN(X ’ Mk, Zk)
k=1

» The complete likelihood for one data point x is:

K

p(x,z | oo 1, T) = [ [ [N (x | s, Z4)]
k=1

» The complete log-likelihood for the dataset X then is:

N K
log p(X,Z | 7, p, X) = Zzznk<|0g77k+ log N'(x, | Nk»zk)>
n=1 k=1



The EM Algorithm - Key ldea

» The EM algorithm proposes instead to look at the expected
complete log-likelihood:

N K

Ez[log p(X,Z | mieo 1, )| = Z'ynk( log 7 + log N (X | £k, Zk))
n=1 k=1

P .« is the posterior probability of the latent variables.

Yok = E(zok) = p(zok = 1) = p(zxk = 1 | xp)

» Remember: the expectation of a binary variable is the
probability that it is equal to 1.



The EM Algorithm - Lower Bound

> Let's find a lower-bound of the log-likelihood:

N K
T Xp
o 00 = Yt 3 i) | = 3 g | 3 s 72200
n=1 k=1 n

N K
>3 "> ank[log pa,(xn) + log Tk — log gni] = L(X; 6)
n=1 k=1

where qpx is any distribution s.t. Zle Gni = 1.

» In the last step, we used Jensen's inequality

log <Z akxk) > Z ay log(xk)
k k



The EM Algorithm - E-Step

» Given that we cannot directly maximize the log-likelihood, we
maximize its lower bound.

» The next step is to find the optimal q distribution that
maximizes this lower bound

» If this lower bound is the tightest, it represents a good
approximation of the log-likelihood

» Next slide: derivation



The EM Algorithm - E-Step derivation

Strategy: compute gradient w.r.t. q,, set it to 0, and try to find a
closed-form solution (as usual).

P> This time we also need to add a Lagrange multiplier to
enforce >, q, =1

Objective (for a single data point x):

K K
max {Z qi [log pg, (x) + log mi — log qu] + A ( (Z qk> - 1)) }

k=1 k=1

|
V. = log pg,(x) + log 7 — log qx — % +A=0
k



The EM Algorithm - E-Step derivation

(copied over from previous slide)
Vg, = log pg, (x) + log mx — log qx — g +A=0

Let's continue...

log g = log pp,(x) +logmk — 1+ X = g = pp,(x) 7k el

To get rid of the term with A, we take the sum of both sides and
exploit the normalization property:

1



The EM Algorithm - E-Step derivation

Finally, you get the result you saw in the lecture (single point x):

Tk PGk(X)
So1q 1 po(x)

Or, for each point x,:

i = — p(ze=1]x)

Tk Py, \X
T,k:K—k(n):P(ZkZHXn):’Ynk
212171 Poy(Xn)

» The optimal g—distribution is equal to the posterior probability
of the latent variables.



The EM Algorithm - M-Step

> Now we maximize the lower bound w.r.t. the parameters
(7K, b, L), given ~ypi fixed.

P Let's have a closer look at the lower bound with optimal g:
N K
L(X:0) = > o [log po, (xn) + log 7 — log Y]
n=1 k=1

= Ez[logp(X,Z | 6)] ZZ%UOg%k
n=1 k=1

constant

» Hence optimizing the lower bound £(X;0) w.r.t. § is equal to
maximizing the expected complete data log-likelihood
(same gradient).



EM Algorithm: M-Step

Strategy: same as before. Compute gradient w.r.t. 7, p, X, set
them to 0, find closed-form solution (if it exists). Where needed
(mk), enforce the normalization constraint with a Lagrange
multiplier.

N K
log p(X; 1, 2) = > 7nk< log x + log N (X | fek, Zk))
n=1 k=1

Example

Let's try to derive the optimal mixing coefficients m, (next slide)



Example: optimal mixing coefficients

k=1

As before, to find ), let's sum on both sides...

N K N
Zﬂ-k—zzn 1 Vnk - _)\:ZZ'Ynk - szzn—l\}’)/nk

n=1 k=1

1 1
= =

N



The EM algorithm - Overview
1. Initialize 70, p{? 2O for k=1,... K and t« 1.
2. E-step. Update latent variables:
(til)N(Xn | “’k -1) E(t 1))

Ynk =
k ZJ[(]- Jf I)N(X | t 1)’2§t 1))

3. M-step. Update parameters of the clusters:

L0 Xt Yk
g ZnN—l Qkn

»0 = Yrk(X ( Ngf))T
g Zn 17f7k nE—:
o _ 1

T = Nz_;')/nk

4. If termination condition is not met, t:= t+ 1 and go to step
2.



K-means vs. mixture models

» K-means is a special case of GMMs!

> K-means
» Hard cluster assignments

» Spherical clusters with uniform prior

» Fast runtime (can be used to initialize a mixture model)

» Gaussian mixture models
» Soft cluster assignments <> probabilities of assignments

» Each cluster has its own covariance (Xg) and “weight"” ()

» Slower runtime

» One is not necessarily better than the other. They both have
their use cases.



GMM: Initial configuration

(@)



GMM: First E-Step

(b)



GMM: First M-Step




GMM: Two EM cycles



GMM: Five EM cycles




	K-means Clustering
	Gaussian mixture models
	Why EM works?


