
Generative Models

ETH Zürich

7–8 May 2020



Overview



(Variational) Autoencoders



Autoencoder (paradigm)

x Encoder 
fe 

z Decoder 
fd 

Loss (MSE, L1, etc.)

x̂

Bottleneck

I A form of unsupervised learning

I Applications: dimensionality reduction, compression,
representation learning, pretraining/semi-supervised learning

I Encoder-decoder architecture with reconstruction loss
I Encoder (latent code): z = fe(x)
I Decoder (reconstruction): x̂ = fd(z)
I The loss is usually MSE, L1, or cross-entropy
I Example (MSE objective): min ‖fd(fe(x))− x‖2

I Can be applied to any kind of data (not just images)



Linear autoencoder (refresher)

I Simplest case: fe and fd are linear maps
I z = Cx
I x̂ = Dz

I MSE objective: min ‖DCx− x‖2
I Can be solved efficiently using SVD

I Same thing as principal component analysis (PCA)



Non-linear autoencoder (aka the autoencoder)

I fe and fd are neural networks (learnable non-linear functions)

I Also referred to as non-linear PCA

I Typical modern architecture for images: (de)convolutional
I Encoder: convolutions + pooling/strides
I Decoder: transposed convolutions



Non-linear autoencoder (continued)

I Powerful data-driven compression

I Can also be used for denoising (denoising autoencoder)

I However: no clear interpretation/structure of latent space

I Unclear how to sample or interpolate

I Visualization of the latent space is tricky
I Many dimensions are used in practice (128+)



Variational autoencoder (motivation)

I We want to enforce a structure on the latent space, at the
expense of the reconstruction quality

I One possible choice: force a prior on the latent space (e.g.
Gaussian distribution)

I We can then generate by decoding a sample from the
distribution

I The compactness of the latent space enables smooth
interpolation



Variational autoencoder (idea)

x Encoder 
fe 

μ
Decoder 

fd 

Log-likelihood loss

x̂

Bottleneck

σ 
z

ε N(0, I)

z = μ+εσ 
Reparameterization

KL loss

I Model latent codes as soft regions instead of points

I Sampling with reparameterization trick
I KL divergence to enforce Gaussian prior

I Without it, the model would learn σ → 0, reverting to a
normal autoencoder



AE vs VAE (on MNIST digits)

Figures from
https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf

I The latent space of a VAE approximates a Gaussian
distribution, which makes sampling easy

I The lack of “holes” allows for smooth interpolation

https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf


Practical considerations

I Diagonal covariance
I For D dimensions, O(D) parameters instead of O(D2) for full

covariance matrix

I Enforcing σ > 0 in the model architecture
I Solution: predict log(σ2) (defined across R) and update

formulas accordingly

I Posterior collapse
I Model gets stuck in a bad local minimum, no learning occurs
I Can be easily detected (KL term goes to 0)
I Workaround: decrease strength of KL term (β-VAE)



Generative Adversarial Networks



Idea

I Two networks, generator and discriminator learn to fool
each other
I They play a minimax game

I Generator: generates a sample given input noise

I Discriminator: classifies the sample as real (coming from the
data distribution) or fake (coming from the generator)

I Generator and discriminator are trained in alternation by
optimizing opposite objectives
I The generator becomes increasingly better at fooling the

discriminator

min
G

max
D

V (D,G ) = Ex∼pdata(x)[logD(x)]+Ez∼pz (z)[log(1−D(G (z)))]



Training (discriminator)

Generator 
G 

Discriminator 
D 

Noise

Real
Fake

Trainable

Frozen

Maximize

min
G

max
D

V (D,G ) = Ex∼pdata(x)[logD(x)] + Ez∼pz (z)[log(1− D(G (z)))]



Training (generator)

Generator 
G 

Discriminator 
D 

Noise

Fake

Trainable

Frozen

Minimize
(or maximize "real")

min
G

max
D

V (D,G ) = Ex∼pdata(x)[logD(x)]+Ez∼pz (z)[log(1− D(G (z)))]



Practical considerations

I Very hard to train (may not converge)!

I Mode collapse (limited diversity)
I The generator may just learn to generate a few samples
I Input noise is (partially or totally) ignored
I Data distribution not entirely captured

I Need to balance generator and discriminator
I They may learn at different speeds



Evaluation

I How do you evaluate something qualitatively without humans?

I Inception score
I Quality: classify images with pretrained Inception network and

compute entropy of classes (must be low)
I Diversity: look at entropy of generated images (must be high)

I Fréchet Inception Distance (FID)
1. Use pretrained Inception network to extract features from

generated images
2. Compare their distributions with those of a real dataset

I Not entirely convincing, but this is what we have



GANs vs VAEs



Quality

I (V)AEs tend to generate blurry images
I Caused by pixel-wise factorization and local loss
I High-frequency details are poorly correlated and hard to predict

I GANs generate sharper images
I Discriminator learns a “perceptual” loss



Training

I GANs are very hard to train
I Architecture and hyperparameters play a crucial role
I Many variants have been proposed

I VAEs are somewhat easier to train
I But not easy (especially for other domains like text)!



Applications

I GANs learn an implicit density
I Can only generate (sample)

I VAEs learn an explicit density
I Can sample and encode

I Some approaches combine VAEs and GANs to take the best
of both of worlds
I VAE-GAN
I VAE to guide the style of a GAN (e.g. SPADE in figure below)


