Generative Models

ETH Zürich

7–8 May 2020

Overview

(Variational) Autoencoders

Autoencoder (paradigm)

 \blacktriangleright A form of unsupervised learning

 \blacktriangleright Applications: dimensionality reduction, compression, representation learning, pretraining/semi-supervised learning

 \blacktriangleright Encoder-decoder architecture with reconstruction loss

IF Encoder (latent code): $z = f_e(x)$

- Decoder (reconstruction): $\hat{x} = f_d(z)$
- \blacktriangleright The loss is usually MSE, L1, or cross-entropy
- ► Example (MSE objective): min $||f_d(f_e(x)) x||^2$

 \triangleright Can be applied to any kind of data (not just images)

Linear autoencoder (refresher)

Simplest case: f_e and f_d are linear maps

 \blacktriangleright z = Cx

$$
\blacktriangleright \hat{x} = Dz
$$

- ► MSE objective: min $\|DCx x\|^2$
	- \triangleright Can be solved efficiently using SVD
- \triangleright Same thing as principal component analysis (PCA)

Non-linear autoencoder (aka the autoencoder)

 \triangleright f_e and f_d are neural networks (learnable non-linear functions)

▶ Also referred to as non-linear PCA

 \blacktriangleright Typical modern architecture for images: (de)convolutional

Encoder: convolutions $+$ pooling/strides

Decoder: transposed convolutions

Non-linear autoencoder (continued)

 \blacktriangleright Powerful data-driven compression

 \triangleright Can also be used for denoising (denoising autoencoder)

 \blacktriangleright However: no clear interpretation/structure of latent space

 \blacktriangleright Unclear how to sample or interpolate

 \triangleright Visualization of the latent space is tricky \blacktriangleright Many dimensions are used in practice (128+)

Variational autoencoder (motivation)

- \triangleright We want to enforce a structure on the latent space, at the expense of the reconstruction quality
- \triangleright One possible choice: force a prior on the latent space (e.g. Gaussian distribution)
- \triangleright We can then generate by decoding a sample from the distribution
- \blacktriangleright The compactness of the latent space enables smooth interpolation

Variational autoencoder (idea)

- \triangleright Model latent codes as soft regions instead of points
- \triangleright Sampling with reparameterization trick
- KL divergence to enforce Gaussian prior
	- \triangleright Without it, the model would learn $\sigma \to 0$, reverting to a normal autoencoder

AE vs VAE (on MNIST digits)

<https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf>

- \blacktriangleright The latent space of a VAE approximates a Gaussian distribution, which makes sampling easy
- \blacktriangleright The lack of "holes" allows for smooth interpolation

Practical considerations

\blacktriangleright Diagonal covariance

For D dimensions, $O(D)$ parameters instead of $O(D^2)$ for full covariance matrix

Enforcing $\sigma > 0$ **in the model architecture**

Solution: predict $log(\sigma^2)$ (defined across $\mathbb R$) and update formulas accordingly

\blacktriangleright Posterior collapse

- \triangleright Model gets stuck in a bad local minimum, no learning occurs
- \triangleright Can be easily detected (KL term goes to 0)
- \triangleright Workaround: decrease strength of KL term (β -VAE)

Generative Adversarial Networks

 \blacktriangleright Two networks, generator and discriminator learn to fool each other

 \blacktriangleright They play a minimax game

- \triangleright Generator: generates a sample given input noise
- \triangleright Discriminator: classifies the sample as real (coming from the data distribution) or fake (coming from the generator)
- \triangleright Generator and discriminator are trained in alternation by optimizing opposite objectives
	- \blacktriangleright The generator becomes increasingly better at fooling the discriminator

 $\min_{G}\max_{D}V(D,G)=\mathbb{E}_{\mathbf{x}\sim\rho_{\sf data}(\mathbf{x})}[\log D(\mathbf{x})]+\mathbb{E}_{\mathbf{z}\sim\rho_{\mathbf{z}}(\mathbf{z})}[\log(1-D(G(\mathbf{z})))]$

Training (discriminator)

$$
\min_{G} \max_{D} V(D, G) = \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}(\mathbf{x})}[\log D(\mathbf{x})] + \mathbb{E}_{\mathbf{z} \sim p_{\mathbf{z}}(\mathbf{z})}[\log(1 - D(G(\mathbf{z})))]
$$

Training (generator)

$$
\min_{G} \max_{D} V(D, G) = \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}(\mathbf{x})}[\log D(\mathbf{x})] + \mathbb{E}_{\mathbf{z} \sim p_{\mathbf{z}}(\mathbf{z})}[\log(1 - D(G(\mathbf{z})))]
$$

Practical considerations

 \triangleright Very hard to train (may not converge)!

 \triangleright Mode collapse (limited diversity)

- \blacktriangleright The generator may just learn to generate a few samples
- Input noise is (partially or totally) ignored
- \triangleright Data distribution not entirely captured

 \blacktriangleright Need to balance generator and discriminator

 \blacktriangleright They may learn at different speeds

Evaluation

 \blacktriangleright How do you evaluate something qualitatively without humans?

\blacktriangleright Inception score

- \triangleright Quality: classify images with pretrained Inception network and compute entropy of classes (must be low)
- \triangleright Diversity: look at entropy of generated images (must be high)

\blacktriangleright Fréchet Inception Distance (FID)

- 1. Use pretrained Inception network to extract features from generated images
- 2. Compare their distributions with those of a real dataset

 \triangleright Not entirely convincing, but this is what we have

GANs vs VAEs

Quality

\triangleright (V)AEs tend to generate blurry images

- \triangleright Caused by pixel-wise factorization and local loss
- \blacktriangleright High-frequency details are poorly correlated and hard to predict

\blacktriangleright GANs generate sharper images **Discriminator learns a "perceptual" loss**

Training

\blacktriangleright GANs are very hard to train

- \blacktriangleright Architecture and hyperparameters play a crucial role
- \blacktriangleright Many variants have been proposed

\triangleright VAEs are somewhat easier to train

 \triangleright But not easy (especially for other domains like text)!

Applications

- \triangleright GANs learn an implicit density
	- \blacktriangleright Can only generate (sample)
- \triangleright VAEs learn an explicit density
	- \blacktriangleright Can sample and encode
- ▶ Some approaches combine VAEs and GANs to take the best of both of worlds
	- \triangleright VAE-GAN
	- \triangleright VAE to guide the style of a GAN (e.g. SPADE in figure below)

