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Overview

I Review: Orthogonality

I Fourier basis and Haar wavelets

I Matching pursuit

I Image processing
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Orthogonality

Inner product
For u,v ∈ Rd,

〈u,v〉 = u>v =

d∑
i=1

uivi,

Orthogonality
Two vectors u,v ∈ H are orthogonal if and only if
〈u,v〉 = 0.
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Orthogonal matrix

Basis
A basis of a vector space is a set of vectors with the
following two properties:

1. It is linearly independent
2. It spans the space

Orthogonal matrix
A basis v1, . . . ,vk is called orthonormal if

v>i vj =

{
0 if i 6= j

1 if i = j

A square matrix A with orthonormal columns is
called an orthogonal matrix. The special case of A
being an orthogonal matrix is important since the
projection matrix becomes extremely simple since
A>A = I, where I is the identity matrix.
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Projections and change of basis

Let {u1,u2, · · · ,un} be an orthonormal basis for Rn.

Goal: write x ∈ Rn as x =
∑n

i=1 aiui with real coefficients ai.

Observe that

〈x,uj〉 = 〈
n∑
i=1

aiui,uj〉

=
n∑
i=1
i6=j

ai〈ui,uj〉+ aj〈uj ,uj〉 linearity

= aj orthonormality

This implies x =
∑n

i=1〈x,ui〉ui.

With U = [u1|u2| · · · |un], the representation of x in terms of the
new basis is U>x. Orthonormality is nice!
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Energy Preservation

For an orthogonal matrix U ∈ Rn×n and vectors x ∈ Rn,

‖Ux‖2 = ‖x‖2 (1)

Observe that ‖x‖22 = 〈x,x〉

This implies that distances are preserved as well!
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Pen&Paper: Problem 1, Series 9
Let x ∈ RK be a signal expressed in an orthonormal basis
U ∈ Rk×k as:

x =

K∑
k=1

zkuk = Uz

For a fixed basis, we want to find a good approximation x̂ for x
using only K̃ coefficients (K̃ < K) with a permutation of indices
σ:

x̂ =

K̃∑
k=1

zσ(k)uσ(k)

Question: Find the permutation σmin which minimizes the L2

approximation error
∥∥x− x̂σ

∥∥2
2

:

σmin = argmin
σ

∥∥x− x̂σ
∥∥2
2
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Basis for functions

f(k) =
∑
n

an sin(ωnk)
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DFT of a Signal

y = sin (60 ∗ 2πx) + 1.5 sin (80 ∗ 2πx)

Figure: Original Signal Figure: Fourier Transform
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Build a different basis

Fourier basis not sufficient for localized signals!

Want to build orthonormal basis for nice signals [0, 1] 7→ R.
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Haar Wavelets
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Haar Wavelets
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Haar wavelets matrix notation

Scale the vectors obtained from before to make basis orthonormal:

U =
1

2
√
2



1 1
√
2 0 2 0 0 0

1 1
√
2 0 −2 0 0 0

1 1 −
√
2 0 0 2 0 0

1 1 −
√
2 0 0 −2 0 0

1 −1 0
√
2 0 0 2 0

1 −1 0
√
2 0 0 −2 0

1 −1 0 −
√
2 0 0 0 2

1 −1 0 −
√
2 0 0 0 −2


U can be constructed recursively!
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Haar Wavelets (Haar System on [0, 1])

I Mother wavelet ψ : [0, 1] 7→ R,

ψ(t) =

{
1 if 0 ≤ t < 1

2
−1 if 1

2 ≤ t ≤ 1

Use the mother wavelet to create the other Haar functions
ψn,k : [0, 1] 7→ R, ψn,k(t) = 2n/2ψ(2nt− k),∀n, k ∈ N≥0 such
that 0 ≤ k < 2n.

I Forms an orthonormal basis
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Notebook: Problem 2, Series 9

Please find the iPython notebook ex2.ipynb from

github.com/dalab/lecture cil public/tree/master/exercises/ex10/ex2.ipynb

and answer the questions.

Institute for Machine Learning, ETHZ CIL: Fourier basis and Haar wavelets/ 14/25

https://github.com/dalab/lecture_cil_public/blob/master/exercises/ex10/ex2.ipynb


Pen&Paper: Problem 3, Series 9
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Overcomplete Dictionaries

Have a set of unit vectors (atoms) u1,u2, · · · ,ul that span Rn
with l > n.
=⇒ representation of x ∈ Rn in terms of u1,u2, · · · ,ul is not

unique!

Goal: Want to find sparse representation of x, i.e. find

z∗ ∈ arg min
z∈Rl
‖z‖0

s.t. Uz = x

where U = [u1|u2| · · · |un].
NP hard! :-(
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Matching Pursuit

With initial residual r0 = x and initial approximation x̂0 = 0,
repeat:

I Find j∗ = argmaxj |〈ri,uj〉|
I Compute better approximation x̂i+1 ← x̂i + 〈ri,uj∗〉uj∗
I Update residual ri+1 ← ri − 〈ri,uj∗〉uj∗

When should we stop?
Does it converge and if so, how fast?
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Matching Pursuit Convergence
I If ‖ri‖22 converges to 0, then ri converges to 0 and x̂i

converges to x

I By the conservation of energy,

‖ri‖22 = 〈ri+1 + 〈ri,uj∗〉uj∗ , ri+1 + 〈ri,uj∗〉uj∗〉
= ‖ri+1‖22 + 2〈ri+1, 〈ri,uj∗〉uj∗〉+ ‖〈ri,uj∗〉uj∗‖22 linearity

= ‖ri+1‖22 + ‖〈ri,uj∗〉uj∗‖22 ⊥
= ‖ri+1‖22 + |〈ri,uj∗〉|2

I For ‖ri‖2 6= 0, we have

‖ri+1‖22
‖ri‖22

= 1−
∣∣∣∣〈 ri
‖ri‖2

,uj∗

〉∣∣∣∣2
I Want to bound

∣∣∣〈 ri
‖ri‖2 ,uj

∗

〉∣∣∣2
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Matching Pursuit Convergence

I With v ∈ Rn s.t. ‖v‖2 = 1,∣∣∣∣〈 ri
‖ri‖2

,uj∗

〉∣∣∣∣ ≥ inf
v

max
j
|〈v,uj〉|

I Idea: as u1,u2, · · · ,ul span Rn, for w ∈ Rn, 〈w,uj〉 = 0 for
all j if and only if w = 0

I Therefore, ∣∣∣∣〈 ri
‖ri‖2

,uj∗

〉∣∣∣∣ > 0
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Matching Pursuit Convergence Recap

‖ri+1‖22 = 1−
∥∥∥∥〈 ri
‖ri‖2

,uj∗

〉∥∥∥∥︸ ︷︷ ︸
0<µmin≤1

2‖ri‖22

There is some µmin ∈]0, 1] s.t.

‖ri‖22 ≤ (1− µ2min)
i‖r0‖22

I This implies convergence!

I More details about MP in the following week.
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Fourier Transform of an Image

How to take FT in 2-D?
I Image can be considered as a signal in 2D

I First take FT of the columns then FT of the rows (You can
interchange them)

How to interpret FT of an image?

I Large changes in the pixel values = High frequency

I Eg : edges, background objects
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FT Example

Figure: Original Image Figure: Frequency Spectrum
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Image Compression by FT

I Reconstruct image by Inverse Fourier Transform using only
the frequencies with largest magnitude

Figure: Using 0.1 percent Figure: Using 1 percent
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Discrete cosine transform

1D Discrete cosine transform:

zk =

N−1∑
n=0

xn cos

[
π

N

(
n+

1

2

)
k

]
k = 0, . . . , N − 1

2D Discrete cosine transform:

zk1,k2
=

N1−1∑
n1=0

(
N2−1∑
n2=0

xn1,n2
cos

[
π

N2

(
n2 +

1

2

)
k2

])
cos

[
π

N1

(
n1 +

1

2

)
k1

]

=

N1−1∑
n1=0

N2−1∑
n2=0

xn1,n2
cos

[
π

N1

(
n1 +

1

2

)
k1

]
cos

[
π

N2

(
n2 +

1

2

)
k2

]
.
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Notebook: Problem 4, Series 9

Please find the iPython notebook ex4.ipynb from

github.com/dalab/lecture cil public/tree/master/exercises/ex10/ex4.ipynb

and answer the questions.
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https://github.com/dalab/lecture_cil_public/blob/master/exercises/ex10/ex4.ipynb
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