Sparse Coding

Leonard Adolphs, Gregor Bachmann, Emilien Pilloud

Overview

- Review: Orthogonality
- Fourier basis and Haar wavelets
- Matching pursuit
- Image processing

Orthogonality

Inner product $\mathsf{For}\ \mathbf{u},\mathbf{v}\in\mathbb{R}^d\text{,}$

$$\langle \mathbf{u}, \mathbf{v}
angle = \mathbf{u}^{ op} \mathbf{v} = \sum_{i=1}^{d} \mathbf{u}_i \mathbf{v}_i,$$

Orthogonality

Two vectors $\mathbf{u}, \mathbf{v} \in H$ are orthogonal if and only if $\langle \mathbf{u}, \mathbf{v} \rangle = 0$.

Institute for Machine Learning, ETHZ CIL: Recall: Orthogonality/

Orthogonal matrix

Basis

A basis of a vector space is a set of vectors with the following two properties:

- $1. \ \ \text{It is linearly independent} \\$
- 2. It spans the space

Orthogonal matrix

A basis $\mathbf{v}_1, \ldots, \mathbf{v}_k$ is called orthonormal if

$$\mathbf{v}_i^{\top} \mathbf{v}_j = \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{if } i = j \end{cases}$$

A square matrix \mathbf{A} with orthonormal columns is called an orthogonal matrix. The special case of \mathbf{A} being an orthogonal matrix is important since the projection matrix becomes extremely simple since $\mathbf{A}^{\top}\mathbf{A} = \mathbf{I}$, where \mathbf{I} is the identity matrix.

Let $\{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_n\}$ be an <u>orthonormal</u> basis for \mathbb{R}^n .

Goal: write $\mathbf{x} \in \mathbb{R}^n$ as $\mathbf{x} = \sum_{i=1}^n a_i \mathbf{u}_i$ with real coefficients a_i .

Let $\{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_n\}$ be an <u>orthonormal</u> basis for \mathbb{R}^n . **Goal**: write $\mathbf{x} \in \mathbb{R}^n$ as $\mathbf{x} = \sum_{i=1}^n a_i \mathbf{u}_i$ with real coefficients a_i . Observe that

$$\begin{split} \langle \mathbf{x}, \mathbf{u}_j \rangle &= \langle \sum_{\substack{i=1\\i \neq j}}^n a_i \mathbf{u}_i, \mathbf{u}_j \rangle \\ &= \sum_{\substack{i=1\\i \neq j}}^n a_i \langle \mathbf{u}_i, \mathbf{u}_j \rangle + a_j \langle \mathbf{u}_j, \mathbf{u}_j \rangle \qquad \text{linearity} \\ &= a_j \qquad \qquad \text{orthonormality} \end{split}$$

Institute for Machine Learning, ETHZ CIL: Recall: Orthogonality/

Let $\{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_n\}$ be an <u>orthonormal</u> basis for \mathbb{R}^n . **Goal**: write $\mathbf{x} \in \mathbb{R}^n$ as $\mathbf{x} = \sum_{i=1}^n a_i \mathbf{u}_i$ with real coefficients a_i . Observe that

$$\begin{split} \langle \mathbf{x}, \mathbf{u}_j \rangle &= \langle \sum_{i=1}^n a_i \mathbf{u}_i, \mathbf{u}_j \rangle \\ &= \sum_{\substack{i=1\\i \neq j}}^n a_i \langle \mathbf{u}_i, \mathbf{u}_j \rangle + a_j \langle \mathbf{u}_j, \mathbf{u}_j \rangle \qquad \text{linearity} \\ &= a_j \qquad \qquad \text{orthonormality} \end{split}$$

This implies $\mathbf{x} = \sum_{i=1}^{n} \langle \mathbf{x}, \mathbf{u}_i \rangle \mathbf{u}_i$.

Let $\{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_n\}$ be an <u>orthonormal</u> basis for \mathbb{R}^n . **Goal**: write $\mathbf{x} \in \mathbb{R}^n$ as $\mathbf{x} = \sum_{i=1}^n a_i \mathbf{u}_i$ with real coefficients a_i . Observe that

$$\begin{split} \langle \mathbf{x}, \mathbf{u}_j \rangle &= \langle \sum_{i=1}^n a_i \mathbf{u}_i, \mathbf{u}_j \rangle \\ &= \sum_{\substack{i=1\\i \neq j}}^n a_i \langle \mathbf{u}_i, \mathbf{u}_j \rangle + a_j \langle \mathbf{u}_j, \mathbf{u}_j \rangle \qquad \text{linearity} \\ &= a_j \qquad \qquad \text{orthonormality} \end{split}$$

This implies $\mathbf{x} = \sum_{i=1}^{n} \langle \mathbf{x}, \mathbf{u}_i \rangle \mathbf{u}_i$.

With $\mathbf{U} = [\mathbf{u}_1 | \mathbf{u}_2 | \cdots | \mathbf{u}_n]$, the representation of \mathbf{x} in terms of the new basis is $\mathbf{U}^\top \mathbf{x}$. Orthonormality is nice!

Energy Preservation

For an orthogonal matrix $\mathbf{U} \in \mathbb{R}^{n imes n}$ and vectors $\mathbf{x} \in \mathbb{R}^n$,

$$\|\mathbf{U}\mathbf{x}\|_2 = \|\mathbf{x}\|_2 \tag{1}$$

Energy Preservation

For an orthogonal matrix $\mathbf{U} \in \mathbb{R}^{n imes n}$ and vectors $\mathbf{x} \in \mathbb{R}^n$,

$$\|\mathbf{U}\mathbf{x}\|_2 = \|\mathbf{x}\|_2 \tag{1}$$

Observe that $\|\mathbf{x}\|_2^2 = \langle \mathbf{x}, \mathbf{x} \rangle$

Energy Preservation

For an orthogonal matrix $\mathbf{U} \in \mathbb{R}^{n imes n}$ and vectors $\mathbf{x} \in \mathbb{R}^n$,

$$\|\mathbf{U}\mathbf{x}\|_2 = \|\mathbf{x}\|_2 \tag{1}$$

Observe that $\|\mathbf{x}\|_2^2 = \langle \mathbf{x}, \mathbf{x} \rangle$

This implies that distances are preserved as well!

Pen&Paper: Problem 1, Series 9

Let $\mathbf{x} \in \mathbb{R}^{K}$ be a signal expressed in an orthonormal basis $\mathbf{U} \in \mathbb{R}^{k \times k}$ as:

$$\mathbf{x} = \sum_{k=1}^{K} z_k \mathbf{u}_k = \mathbf{U} \mathbf{z}$$

For a fixed basis, we want to find a good approximation $\hat{\mathbf{x}}$ for \mathbf{x} using only \tilde{K} coefficients ($\tilde{K} < K$) with a permutation of indices σ :

$$\hat{\mathbf{x}} = \sum_{k=1}^{\tilde{K}} z_{\sigma(k)} \mathbf{u}_{\sigma(k)}$$

Question: Find the permutation σ^{min} which minimizes the L^2 approximation error $\|\mathbf{x} - \hat{\mathbf{x}}_{\sigma}\|_2^2$:

$$\sigma^{min} = \underset{\sigma}{\operatorname{argmin}} \|\mathbf{x} - \hat{\mathbf{x}}_{\sigma}\|_{2}^{2}$$

Institute for Machine Learning, ETHZ

CIL: Recall: Orthogonality/

Basis for functions

DFT of a Signal

 $y = \sin(60 * 2\pi x) + 1.5\sin(80 * 2\pi x)$

Figure: Original Signal

Figure: Fourier Transform

Build a different basis

Fourier basis not sufficient for localized signals!

Build a different basis

Fourier basis not sufficient for localized signals! Want to build orthonormal basis for *nice* signals $[0,1] \mapsto \mathbb{R}$.

Institute for Machine Learning, ETHZ

Haar wavelets matrix notation

Scale the vectors obtained from before to make basis orthonormal:

$$\mathbf{U} = \frac{1}{2\sqrt{2}} \begin{bmatrix} 1 & 1 & \sqrt{2} & 0 & 2 & 0 & 0 & 0 \\ 1 & 1 & \sqrt{2} & 0 & -2 & 0 & 0 & 0 \\ 1 & 1 & -\sqrt{2} & 0 & 0 & 2 & 0 & 0 \\ 1 & 1 & -\sqrt{2} & 0 & 0 & -2 & 0 & 0 \\ 1 & -1 & 0 & \sqrt{2} & 0 & 0 & 2 & 0 \\ 1 & -1 & 0 & \sqrt{2} & 0 & 0 & -2 & 0 \\ 1 & -1 & 0 & -\sqrt{2} & 0 & 0 & 0 & 2 \\ 1 & -1 & 0 & -\sqrt{2} & 0 & 0 & 0 & -2 \end{bmatrix}$$

U can be constructed recursively!

Haar Wavelets (Haar System on [0,1])

• Mother wavelet $\psi: [0,1] \mapsto \mathbb{R}$,

$$\psi(t) = \begin{cases} 1 & \text{if } 0 \le t < \frac{1}{2} \\ -1 & \text{if } \frac{1}{2} \le t \le 1 \end{cases}$$

Haar Wavelets (Haar System on [0,1])

• Mother wavelet $\psi : [0,1] \mapsto \mathbb{R}$,

$$\psi(t) = \begin{cases} 1 & \text{if } 0 \le t < \frac{1}{2} \\ -1 & \text{if } \frac{1}{2} \le t \le 1 \end{cases}$$

Use the mother wavelet to create the other Haar functions $\psi_{n,k}: [0,1] \mapsto \mathbb{R}$, $\psi_{n,k}(t) = 2^{n/2} \psi(2^n t - k), \forall n, k \in \mathbb{N}_{\geq 0}$ such that $0 \leq k < 2^n$.

Forms an orthonormal basis

Notebook: Problem 2, Series 9

Please find the iPython notebook ex2.ipynb from

github.com/dalab/lecture_cil_public/tree/master/exercises/ex10/ex2.ipynb

and answer the questions.

Pen&Paper: Problem 3, Series 9

Institute for Machine Learning, ETHZ

CIL: Fourier basis and Haar wavelets/

Overcomplete Dictionaries

Have a set of unit vectors (atoms) $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_l$ that span \mathbb{R}^n with l > n.

 \implies representation of $\mathbf{x} \in \mathbb{R}^n$ in terms of $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_l$ is not unique!

Overcomplete Dictionaries

Have a set of unit vectors (atoms) $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_l$ that span \mathbb{R}^n with l > n.

 \implies representation of $\mathbf{x} \in \mathbb{R}^n$ in terms of $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_l$ is not unique!

Goal: Want to find sparse representation of \mathbf{x} , i.e. find

$$\mathbf{z}^* \in \arg\min_{\mathbf{z}\in\mathbb{R}^l} \|\mathbf{z}\|_0$$

s.t. $\mathbf{U}\mathbf{z} = \mathbf{x}$

where $\mathbf{U} = [\mathbf{u}_1 | \mathbf{u}_2 | \cdots | \mathbf{u}_n]$. NP hard! :-(

Matching Pursuit

With initial residual $\mathbf{r}_0=\mathbf{x}$ and initial approximation $\hat{\mathbf{x}}_0=\mathbf{0},$ repeat:

- Find $j^* = \arg \max_j |\langle \mathbf{r}_i, \mathbf{u}_j \rangle|$
- Compute better approximation $\hat{\mathbf{x}}_{i+1} \leftarrow \hat{\mathbf{x}}_i + \langle \mathbf{r}_i, \mathbf{u}_{j^*} \rangle \mathbf{u}_{j^*}$
- ▶ Update residual $\mathbf{r}_{i+1} \leftarrow \mathbf{r}_i \langle \mathbf{r}_i, \mathbf{u}_{j^*} \rangle \mathbf{u}_{j^*}$

Matching Pursuit

With initial residual $\mathbf{r}_0=\mathbf{x}$ and initial approximation $\hat{\mathbf{x}}_0=\mathbf{0},$ repeat:

- Find $j^* = \arg \max_j |\langle \mathbf{r}_i, \mathbf{u}_j \rangle|$
- Compute better approximation $\hat{\mathbf{x}}_{i+1} \leftarrow \hat{\mathbf{x}}_i + \langle \mathbf{r}_i, \mathbf{u}_{j^*} \rangle \mathbf{u}_{j^*}$
- $\blacktriangleright \text{ Update residual } \mathbf{r}_{i+1} \leftarrow \mathbf{r}_i \langle \mathbf{r}_i, \mathbf{u}_{j^*} \rangle \mathbf{u}_{j^*}$

When should we stop? Does it converge and if so, how fast?

• If $\|\mathbf{r}_i\|_2^2$ converges to 0, then \mathbf{r}_i converges to 0 and $\hat{\mathbf{x}}_i$ converges to \mathbf{x}

- If $\|\mathbf{r}_i\|_2^2$ converges to 0, then \mathbf{r}_i converges to 0 and $\hat{\mathbf{x}}_i$ converges to \mathbf{x}
- By the conservation of energy,

$$\begin{split} |r_i||_2^2 &= \langle \mathbf{r}_{i+1} + \langle \mathbf{r}_i, \mathbf{u}_{j^*} \rangle \mathbf{u}_{j^*}, \mathbf{r}_{i+1} + \langle \mathbf{r}_i, \mathbf{u}_{j^*} \rangle \mathbf{u}_{j^*} \rangle \\ &= \|\mathbf{r}_{i+1}\|_2^2 + 2 \langle \mathbf{r}_{i+1}, \langle \mathbf{r}_i, \mathbf{u}_{j^*} \rangle \mathbf{u}_{j^*} \rangle + \| \langle \mathbf{r}_i, \mathbf{u}_{j^*} \rangle \mathbf{u}_{j^*} \|_2^2 \quad \text{linearity} \\ &= \|\mathbf{r}_{i+1}\|_2^2 + \| \langle \mathbf{r}_i, \mathbf{u}_{j^*} \rangle \mathbf{u}_{j^*} \|_2^2 \qquad \bot \\ &= \|\mathbf{r}_{i+1}\|_2^2 + |\langle \mathbf{r}_i, \mathbf{u}_{j^*} \rangle|^2 \end{split}$$

- If $\|\mathbf{r}_i\|_2^2$ converges to 0, then \mathbf{r}_i converges to 0 and $\hat{\mathbf{x}}_i$ converges to \mathbf{x}
- By the conservation of energy,

$$\begin{aligned} \|r_i\|_2^2 &= \langle \mathbf{r}_{i+1} + \langle \mathbf{r}_i, \mathbf{u}_{j^*} \rangle \mathbf{u}_{j^*}, \mathbf{r}_{i+1} + \langle \mathbf{r}_i, \mathbf{u}_{j^*} \rangle \mathbf{u}_{j^*} \rangle \\ &= \|\mathbf{r}_{i+1}\|_2^2 + 2 \langle \mathbf{r}_{i+1}, \langle \mathbf{r}_i, \mathbf{u}_{j^*} \rangle \mathbf{u}_{j^*} \rangle + \|\langle \mathbf{r}_i, \mathbf{u}_{j^*} \rangle \mathbf{u}_{j^*}\|_2^2 \quad \text{linearity} \\ &= \|\mathbf{r}_{i+1}\|_2^2 + \|\langle \mathbf{r}_i, \mathbf{u}_{j^*} \rangle \mathbf{u}_{j^*}\|_2^2 \qquad \bot \\ &= \|\mathbf{r}_{i+1}\|_2^2 + |\langle \mathbf{r}_i, \mathbf{u}_{j^*} \rangle|^2 \end{aligned}$$

2

For $\|\mathbf{r}_i\|_2 \neq 0$, we have

$$\begin{split} \frac{\|r_{i+1}\|_2^2}{\|r_i\|_2^2} &= 1 - \left| \left\langle \frac{\mathbf{r}_i}{\|\mathbf{r}_i\|_2}, \mathbf{u}_{j^*} \right\rangle \right| \end{split}$$
Want to bound $\left| \left\langle \frac{\mathbf{r}_i}{\|\mathbf{r}_i\|_2}, \mathbf{u}_{j^*} \right\rangle \right|^2$

Institute for Machine Learning, ETHZ

CIL: Matching pursuit/

• With $\mathbf{v} \in \mathbb{R}^n$ s.t. $\|\mathbf{v}\|_2 = 1$,

$$\left|\left\langle \frac{\mathbf{r}_i}{\|\mathbf{r}_i\|_2}, \mathbf{u}_{j^*} \right\rangle\right| \geq \inf_{\mathbf{v}} \max_j |\langle \mathbf{v}, \mathbf{u}_j \rangle|$$

Institute for Machine Learning, ETHZ CIL: Matching pursuit/

$$\begin{array}{l} \bullet \ \, \text{With } \mathbf{v} \in \mathbb{R}^n \ \text{s.t.} \ \left\| \mathbf{v} \right\|_2 = 1, \\ \\ \left| \left\langle \frac{\mathbf{r}_i}{\|\mathbf{r}_i\|_2}, \mathbf{u}_{j^*} \right\rangle \right| \geq \inf_{\mathbf{v}} \max_j |\langle \mathbf{v}, \mathbf{u}_j \rangle| \end{array}$$

▶ Idea: as $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_l$ span \mathbb{R}^n , for $\mathbf{w} \in \mathbb{R}^n$, $\langle \mathbf{w}, \mathbf{u}_j \rangle = 0$ for all j if and only if $\mathbf{w} = \mathbf{0}$

Therefore,

$$\left| \left\langle \frac{\mathbf{r}_i}{\|\mathbf{r}_i\|_2}, \mathbf{u}_{j^*} \right\rangle \right| > 0$$

Institute for Machine Learning, ETHZ

CIL: Matching pursuit/

$$\|\mathbf{r}_{i+1}\|_2^2 = 1 - \underbrace{\left\|\left\langle \frac{\mathbf{r}_i}{\|\mathbf{r}_i\|_2}, \mathbf{u}_{j^*}\right\rangle\right\|}_{0 < \mu_{\min} \le 1} 2 \|\mathbf{r}_i\|_2^2$$

There is some $\mu_{\min} \in]0,1]$ s.t.

$$\|\mathbf{r}_i\|_2^2 \le (1 - \mu_{\min}^2)^i \|\mathbf{r}_0\|_2^2$$

More details about MP in the following week.

Fourier Transform of an Image

How to take FT in 2-D?

- Image can be considered as a signal in 2D
- First take FT of the columns then FT of the rows (You can interchange them)

Fourier Transform of an Image

How to take FT in 2-D?

- Image can be considered as a signal in 2D
- First take FT of the columns then FT of the rows (You can interchange them)

How to interpret FT of an image?

- Large changes in the pixel values = High frequency
- Eg : edges, background objects

FT Example

Figure: Original Image

Figure: Frequency Spectrum

Institute for Machine Learning, ETHZ CIL: Image processing/

Image Compression by FT

 Reconstruct image by Inverse Fourier Transform using only the frequencies with largest magnitude

Figure: Using 0.1 percent

Figure: Using 1 percent

Discrete cosine transform

1D Discrete cosine transform:

$$z_k = \sum_{n=0}^{N-1} x_n \cos\left[\frac{\pi}{N}\left(n+\frac{1}{2}\right)k\right] \qquad k = 0, \dots, N-1$$

2D Discrete cosine transform:

$$z_{k_1,k_2} = \sum_{n_1=0}^{N_1-1} \left(\sum_{n_2=0}^{N_2-1} x_{n_1,n_2} \cos\left[\frac{\pi}{N_2} \left(n_2 + \frac{1}{2}\right) k_2\right] \right) \cos\left[\frac{\pi}{N_1} \left(n_1 + \frac{1}{2}\right) k_1\right] \\ = \sum_{n_1=0}^{N_1-1} \sum_{n_2=0}^{N_2-1} x_{n_1,n_2} \cos\left[\frac{\pi}{N_1} \left(n_1 + \frac{1}{2}\right) k_1\right] \cos\left[\frac{\pi}{N_2} \left(n_2 + \frac{1}{2}\right) k_2\right]$$

Institute for Machine Learning, ETHZ CIL: Image processing/

Notebook: Problem 4, Series 9

Please find the iPython notebook ex4.ipynb from

github.com/dalab/lecture_cil_public/tree/master/exercises/ex10/ex4.ipynb

and answer the questions.

Institute for Machine Learning, ETHZ CIL: Image processing/