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Administrative

I No exercise class next week!

I Q & A session next Friday, May 29, 8:15-10am.
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Notations

I A =

 A•1 A•2 . . . A•N

 =


AT

1•
AT

2•
...

AT
D•


where A ∈ RD×N , Ai• ∈ RN and A•i ∈ RD

Warning: We will view both columns A•l and rows Al• as
”column vectors” (AT

•lAl• ∈ R, A•lA
T
l• ∈ RD×N )

I ||A||F =
√∑D

i=1

∑N
j=1A

2
ij

I ||x||1 =
∑D

i=1 |xi|

I ||x||0 =
∑D

i=1 1{xi 6=0}
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Recap of Topics: Compressed Sensing

I Problem: As soon as we measure a signal x ∈ RD, we
immediately compress and thus throw away most of the data
(Think of .raw versus .jpeg)

I Idea: Instead of measuring all of the signal x, only measure
linear combinations:

y = Wx ∈ RM

where typically Wij
i.i.d.∼ N (0, 1

D ) and M << D
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Compressed Sensing II

I Assume: z = UTx is sparse in some known fixed orthogonal
basis U

I Want to solve:

y = Wx = WUz = Θz

where Θ = WU ∈ RM×D
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Compressed Sensing III

I Problem: y = Θz is an undercomplete set of equations (D
unknowns versus M equations) =⇒ Ill-posed task

I Solution: Make use of the sparsity of z:

z∗ ∈ argmin
z
||z||0 such that y = Θz

Apply the toolbox from overcomplete dictionaries: Convex
relaxation ||z||1 or Matching Pursuit

I Notice: Very similar problem, left-hand side consists of linear
combinations y instead of x.
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Dictionary Learning

I So far: We always considered fixed basis U and found the
best/sparsest linear combination z

I Now: Also learn the dictionary U =⇒ Can adapt to
characteristics of specific signal x

I Setup: Have N samples of the signal: X ∈ RD×N

I Want to solve:

X ≈ X̂ = UZ

where U ∈ RD×L and Z ∈ RL×N
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Matrix Factorization

I Consider the following optimization problem:

(U∗,Z∗) ∈ argmin
U,Z

||X−UZ||2F

Recall: ||A||2F =
∑n,m

i,j=1 A2
ij for A ∈ Rm×n

I Unfortunately: Not convex in the pair (U,Z)

I But: We have convexity in U or Z when one variable is kept
fixed

=⇒ Step-wise greedy optimization
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Alternating Minimization

I Coding Step: Z(t+1) ∈ argminZ ||X−U(t)Z||2F subject to Z
sparse

I Dictionary Step: U(t+1) ∈ argminU ||X−UZ(t+1)||2F
subject to ||U•l||2 = 1 for l = 1, . . . L
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Coding Step

I Recall: ||A||2F =
∑n

i=1 ||A•i||22 for any A ∈ Rm×n

I Thus: ∥∥∥X−U(t)Z
∥∥∥2
F
=

N∑
i=1

∥∥∥X•i − (U(t)Z
)
•i

∥∥∥2
2

=

N∑
i=1

∥∥∥X•i −U(t)Z•i

∥∥∥2
2

=⇒ Coding step decomposes over columns of Z

z
(t+1)
i ∈ argmin

z
||z||0 such that

∥∥∥X•i −U(t)z
∥∥∥
2
≤ σ ‖X•i‖2
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Dictionary Step I

I Cannot separate along the atoms U•l

I Update only one atom at a time

I Fix all atoms except for U•l:

U =

 U
(t)
•1 . . . U•l . . . U

(t)
•L


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Dictionary Step II

I Isolate the residual due to U•l

I Trick: AB =
∑d

i=1 A•iB
T
i•

I Apply the trick to the cost function:

∥∥∥X−UZ(t+1)
∥∥∥2
F

=

∥∥∥∥∥X−
L∑
i=1

U•i

(
Z

(t+1)
i•

)T∥∥∥∥∥
2

F

=

∥∥∥∥∥∥X−
L∑
i 6=l

U•i

(
Z

(t+1)
i•

)T
−U•l

(
Z
(t+1)
l•

)T∥∥∥∥∥∥
2

F

=

∥∥∥∥R(t)
l −U•l

(
Z

(t+1)
l•

)T∥∥∥∥2
F
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Dictionary Step III

I Recall: uvT ∈ Rm×n for u ∈ Rm, v ∈ Rn is a rank 1 matrix

I Thus: We’re making a rank 1 approximation to R
(t)
l

I The best solution is given by the SVD:

R
(t)
l = ŨΣṼT =

∑
i

σiŨ•iṼ
T
i•

=⇒ U∗•l = Ũ•1 and ‖U∗•l‖2 = 1 ”for free”
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=⇒ U∗•l = Ũ•1 and ‖U∗•l‖2 = 1 ”for free”

Institute for Machine Learning, ETHZ CIL: / 13/26



Dictionary Step III

I Recall: uvT ∈ Rm×n for u ∈ Rm, v ∈ Rn is a rank 1 matrix

I Thus: We’re making a rank 1 approximation to R
(t)
l

I The best solution is given by the SVD:

R
(t)
l = ŨΣṼT =

∑
i

σiŨ•iṼ
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=⇒ U∗•l = Ũ•1 and ‖U∗•l‖2 = 1 ”for free”

Institute for Machine Learning, ETHZ CIL: / 13/26



Dictionary Step III

I Recall: uvT ∈ Rm×n for u ∈ Rm, v ∈ Rn is a rank 1 matrix

I Thus: We’re making a rank 1 approximation to R
(t)
l

I The best solution is given by the SVD:

R
(t)
l = ŨΣṼT =
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Exercise 1a)

I Given signal x =

 3
1
−2

 and U = 1√
3

1 −1 1 1
1 1 −1 1
1 1 1 −1



I Claim 1: ||x− zu||2 is minimal iff |xTu| is maximal:

Indeed:

‖x− zu‖22 = ‖x‖
2
2 + z2 ‖u‖22 − 2zxTu

= ‖x‖22 + z2 − 2zxTu

I Claim 2: z∗ = xTu

Indeed:

∂

∂z
||x− zu||22

!
= 0 ⇐⇒ 2z − 2xTu

!
= 0 ⇐⇒ z = xTu
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Exercise 1a)

I Using Claim 1, we only have to calculate the inner products:

|xTU•1| = 2√
3

, |xTU•2| = 4√
3

, |xTU•3| = 0, |xTU•4| = 6√
3

I x̂(1) =
(
xTU•4

)
U•4 =

 2
2
−2



I r(1) = x− x̂(0) =

 1
−1
0


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Exercise 1b)

I Now: Find ||r(1) − x̂(2)||2 = ||r(1) − zu(2)||

I We can again calculate the inner products:

|UT
•1r

(1)| = 0, |UT
•2r

(1)| = |UT
•3r

(1)| = 2√
3

, |UT
•4r

(1)| = 0

I We can take either U•,2 or U•,3, let’s go with U•,2

I x̂(2) =
(
UT
•2r

(1)
)
U•2 =

 2
3
−2

3
−2

3


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Exercise 1c)

We can now obtain the sparse representations:

I ||z||0 = 1 =⇒ z =


0
0
0
6√
3



I ||z||0 = 2 =⇒ z =


0
− 2√

3

0
6√
3

 or z =


0
0
2√
3
6√
3


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Exercise 2.a)

Draw the level set {x ∈ R2 : ||x||i = 1} for i ∈ {0, 1, 2}

I ||x||2 = 1 ⇐⇒ x21 + x22 = 1 =⇒ Circle with center (0, 0)
and radius 1 =⇒ Picture b)

I ||x||1 = 1 ⇐⇒ |x1|+ |x2| = 1

Let’s look at 1st quadrant: x1, x2 > 0 =⇒ x1 + x2 = 1

Equation of a line with slope −1 and intercept 1.

Similarly for other quadrants =⇒ Picture a)

I ||x||0 = 1 ⇐⇒ I{x1 6=0} + I{x2 6=0} = 1

⇐⇒ (a, 0) or (0, a) for a ∈ R =⇒ Picture c)
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Exercise 2.b)
Goal: minx∈R2 ||x||i such that 1

2x1 + x2 = 1

Intuition: Draw the line and ||x||i = r for smaller and smaller r
until there is no intersection. Remember, we need an intersection,
otherwise we cannot fulfill the constraint.

Figure: Illustration for || · ||2
Institute for Machine Learning, ETHZ CIL: / 19/26



Exercise 2.b)

The same procedure leads to the following plots:

Figure: Solution for || · ||1 and || · ||0 respectively
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Exercise 2.c)

I We can see that || · ||1 and || · ||0 share the solution x =

(
0
1

)

I This gives some (limited) intuition why we can often relax an
optimization problem involving || · ||0 to || · ||1 without
affecting the set of solutions too much.

Institute for Machine Learning, ETHZ CIL: / 21/26



Exercise 2.c)

I We can see that || · ||1 and || · ||0 share the solution x =

(
0
1

)
I This gives some (limited) intuition why we can often relax an

optimization problem involving || · ||0 to || · ||1 without
affecting the set of solutions too much.

Institute for Machine Learning, ETHZ CIL: / 21/26



Exercise 4a)

I Goal: Find a overcomplete dictionary U and signal x such
that x̂ will never converge to x

I Let’s choose U =

(
1
√
2
2

√
3
2

0
√
2
2

1
2

)

I First consider signals of the form x =

(
0
z

)
for z ∈ R and let’s

perform the first step of matching pursuit:

|UT
•1x| = 0 |UT

•2x| = |z|
√
2
2 , |UT

•3x| =
|z|
2

=⇒ r(1) = x−
(
xTU•2

)
U•2 =

(
− z

2
z
2

)
=

(
−y
y

)
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Exercise 4a) Continued

I Let us perform the next step:

|UT
•1r

(1)| = |y|, |UT
•2r

(1)| = 0, |UT
•3r

(1)| =
√
3−1
4 |y|

=⇒ r(2) = r(1) −
(
UT
•1r

(1)
)
U•1 =

(
0
y

)
=

(
0
z
2

)
I We’re again in the same setting as before!

I Induction: r(2n) =

(
0
z
2n

)
and r(2n+1) =

(
− z

2n+1

z
2n+1

)

Only for n −→∞ we can reach r(∞) = 0, e.g. for x =

(
0
1

)

I So: MP converges, but it takes ∞ steps!
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z
2n+1

)
Only for n −→∞ we can reach r(∞) = 0, e.g. for x =

(
0
1

)
I So: MP converges, but it takes ∞ steps!
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Exercise 4.b)

I Goal: Find a overcomplete dictionary U and signal x such
that the sparse representation found by MP is not optimal

I Let’s choose U =

(
1 0

√
2
2

0 1
√
2
2

)
and x =

(
2
1

)

I Notice: x = 2 ·U•1 + 1 ·U•2 + 0 ·U•3 =⇒ z =

2
1
0


I We found a representation z with ||z||0 = 2
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Exercise 4.b) Continued

What does Matching Pursuit return?

1a |UT
•1x| = 2, |UT

•2x| = 1, |UT
•3x| = 3√

2

1b r(1) = x−
(
xTU•1

)
U•1 =

(
1
2
−1

2

)

2a |UT
•1r

(1)| = 1
2 , |UT

•2r
(1)| = 1

2 , |UT
•3r

(1)| = 0

2b r(2) = r(1) −
(
UT
•3r

(1)
)
U•3 =

(
0
−1

2

)

3a |UT
•1r

(2)| = 0, |UT
•2r

(2)| = 1
2 , |UT

•3r
(2)| =

√
2
4

3b r(3) = r(2) −
(
UT
•3r

(2)
)
U•3 =

(
0
0

)
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Exercise 4.b) Continued

I Matching Pursuit converges (r(3) = 0) after 3 steps

I We obtain the representation zMP =

 1
2
−1

2
3√
2


I Notice that ||zMP ||0 = 3 > ||z||0 = 2

=⇒ Matching Pursuit didn’t find the sparsest representation

Institute for Machine Learning, ETHZ CIL: / 26/26



Exercise 4.b) Continued

I Matching Pursuit converges (r(3) = 0) after 3 steps

I We obtain the representation zMP =

 1
2
−1

2
3√
2



I Notice that ||zMP ||0 = 3 > ||z||0 = 2

=⇒ Matching Pursuit didn’t find the sparsest representation

Institute for Machine Learning, ETHZ CIL: / 26/26



Exercise 4.b) Continued

I Matching Pursuit converges (r(3) = 0) after 3 steps

I We obtain the representation zMP =

 1
2
−1

2
3√
2


I Notice that ||zMP ||0 = 3 > ||z||0 = 2

=⇒ Matching Pursuit didn’t find the sparsest representation

Institute for Machine Learning, ETHZ CIL: / 26/26



Exercise 4.b) Continued

I Matching Pursuit converges (r(3) = 0) after 3 steps

I We obtain the representation zMP =

 1
2
−1

2
3√
2


I Notice that ||zMP ||0 = 3 > ||z||0 = 2

=⇒ Matching Pursuit didn’t find the sparsest representation

Institute for Machine Learning, ETHZ CIL: / 26/26


