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Dimension Reduction



Dimension Reduction

» Dimension reduction
» given (high-dimensional) data points {x; e R}, i=1,...,n
» find low-dimensional representation {z; € R*}, k < m

» Example: face images

» 2D pixel fields, e.g. x; € R100x100 ~ R10000 (yectorization)

> approximate each image by weighted superposition of basis images

-0.1645+

(from: Turk and Pentland, Eigenfaces for Recognition, 1991)

» coefficients = 4-dimensional representation



Dimension Reduction: Motivation

» Motivation

» visualization — e.g. 2D or 3D

» data compression — fewer coefficients

» signal recovery — discard irrelevant information (noise)
» data analysis — discover intrinsic modes of variation

» feature discovery — learn better representations

» generative models — latent variables



Linear Dimension Reduction

» Linear dimension reduction

» z; = Cx; for some (fixed) matrix C € R¥*™

v

generalizes to new data points: C represents linear map R™ — R*

v

each feature is a linear combination of input variables
m
z=Cx < 2z, = E ersts (Vr), C=(cps)1sr<k
1<
s=1 -

> neural network terminology: each z,. is a linear unit

» computes a linear function of its inputs

> with weight vector ¢, = (¢r1,. .., crm)T € R™ (r-th row of C)



Dimension Reduction: Neural Network View
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Can think of this in terms of a (deep) neural network

» Optimize representations w.r.t loss defined over targets y

v

Supervised learning = backpropagation (subsequent lecture)

» Our interest here: unsupervised learning
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Linear Autoencoder

» Linear reconstruction map D € R™*k
» Parameters § = (C, D) (coder/decoder)

» Use squared reconstruction loss
(x;0) = $x — %(9)[2, %(6) := DCx
» Sample reconstruction error

T6) = 3" xi:0)
=1

> goal: approximately learn identity map
» only relative to data distribution

> retrieve intermediate representation

» Fully unsupervised approach: z acts as a
bottleneck layer



Low-Rank Approximation

» How can we interpret the linear auto-encoder?

> it defines a linear map F : R™ — R™ (as a matrix F := DC)

> ideally: F ~ I (approx. identity), but: bottleneck = bounded rank

» Rank of a linear map A : R¥ — R/
rank(A) := dim (im(A)) < min{k, [}
» note that for a matrix product (composition of linear maps)
rank(AB) < min{rank(A), rank(B)}.

» decomposition rank: M = AB with A € R™** B e R**", if and
only if rank(M) < k



Frobenius Norm Objective

» Linear autoencoder performs low-rank approximation
rank(F) < min{rank(C),rank(D)} < k
» Are there limits on the reconstruction quality achievable?

A~

» Data matrix X = [x;...Xj,] and approximations X = [X1...%Xp]

1 < ) 1 .
JO) = 5> Ixi = %i(O)|* = - |IX — X(6)]7-
=1

where ||A||p := [[vec(A)[2 = > a? (Frobenius norm)
ij



Eckart-Young Theorem

» Eckart-Young theorem: for k < min{m,n}

argmin [X —X[|2=U%, V'
X:rank(X)=k

» X =UX VT is the Singular Value Decomposition of X
> 3 is the truncated diagonal matrix of singular values

» minimal reconstruction loss miny J(6) = ;‘;‘z{ﬁ’"} of.

» Optimal rank k approximation: can be obtained via Singular
Value Decomposition (SVD)

» C. Eckart, G. Young, The approximation of one matrix by another
of lower rank. Psychometrika, Volume 1, 1936
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Singular Value Decomposition

» Any m X n matrix A can be decomposed into

Al=| U | |2 V]

nxXmn

m X n m X m m X n

» with U, V orthogonal, i.e. UUT =1,,, VVT =1,.

» and with 3 diagonal, s := min{m,n}
E:diag<alv"'70's)7 0-12"'20'520

» “diagonal” ~ padded w/ zeros to match dimensionality



Singular Vectors and Values

» Columns of U and V: left/right singular vectors

» Entries of X: singular values

» number of distinct singular values < s = min{n, m}

» o; with two (or more) linearly independent left (or right) singular
vectors = degenerate

» Uniqueness / ambiguity

> singular vectors for non-degenerate o;: unique up to sign

» singular vectors for degenerate o;: orthonormal basis (non-unique)
of span (unique)

» Rank and SVD (exercise)

rank(A)=r <= 0, >0 Aoyy1=0p12="--=0
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Optimal Linear Autoencoder via SVD

> Given data X € R™*” with SVD X = UXV .
» Define Uy, := [ujuy...u;] € R™*F the first k columns of U

» C* = UkT_ and D* = Uy, yields minimal reconstruction error for a
linear autoencoder with k£ hidden units.

> proof:

X =D'C'X=U, U} (USV") =U,[I; 0]V’

=U [Ig g] XV =UX, V' = optimal (by EY)

» for any A € GL(m): C = AU/ and D = U,A~! are also optimal

» — low-dimensional representation z has limited interpretability



Weight Sharing

» Corollary: weight sharing D = C' w/o reducing modeling power

» Reduces ambiguity: A= = AT, i.e. A € O(m) (orthogonal
group)

» — mapping x — z uniquely determined up to rotations
(permutations, reflections)

Next week: principal component analysis, algorithms
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