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Section 1

Dimension Reduction



Dimension Reduction

I Dimension reduction

I given (high-dimensional) data points {xi ∈ Rm}, i = 1, . . . , n

I find low-dimensional representation {zi ∈ Rk}, k � m

I Example: face images

I 2D pixel fields, e.g. xi ∈ R100×100 ' R10000 (vectorization)

I approximate each image by weighted superposition of basis images

(from: Turk and Pentland, Eigenfaces for Recognition, 1991)

I coefficients = 4-dimensional representation



Dimension Reduction: Motivation

I Motivation

I visualization – e.g. 2D or 3D

I data compression – fewer coefficients

I signal recovery – discard irrelevant information (noise)

I data analysis – discover intrinsic modes of variation

I feature discovery – learn better representations

I generative models – latent variables



Linear Dimension Reduction

I Linear dimension reduction

I zi = Cxi for some (fixed) matrix C ∈ Rk×m

I generalizes to new data points: C represents linear map Rm → Rk

I each feature is a linear combination of input variables

z = Cx ⇐⇒ zr =
m∑
s=1

crsxs (∀r), C = (crs) 1≤r≤k
1≤s≤m

I neural network terminology: each zr is a linear unit

I computes a linear function of its inputs

I with weight vector cr = (cr1, . . . , crm)> ∈ Rm (r-th row of C)



Dimension Reduction: Neural Network View

I Can think of this in terms of a (deep) neural network

I Optimize representations w.r.t loss defined over targets y

I Supervised learning =⇒ backpropagation (subsequent lecture)

I Our interest here: unsupervised learning
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Linear Autoencoder



Linear Autoencoder

I Linear reconstruction map D ∈ Rm×k

I Parameters θ = (C,D) (coder/decoder)

I Use squared reconstruction loss

`(x; θ) = 1
2‖x− x̂(θ)‖2, x̂(θ) := DCx

I Sample reconstruction error

J(θ) =
1

n

n∑
i=1

`(xi; θ)

I goal: approximately learn identity map

I only relative to data distribution

I retrieve intermediate representation

I Fully unsupervised approach: z acts as a
bottleneck layer



Low-Rank Approximation

I How can we interpret the linear auto-encoder?

I it defines a linear map F : Rm → Rm (as a matrix F := DC)

I ideally: F ≈ I (approx. identity), but: bottleneck = bounded rank

I Rank of a linear map A : Rk → Rl

rank(A) := dim (im(A)) ≤ min{k, l}

I note that for a matrix product (composition of linear maps)

rank(AB) ≤ min{rank(A), rank(B)}.

I decomposition rank: M = AB with A ∈ Rm×k, B ∈ Rk×n, if and
only if rank(M) ≤ k



Frobenius Norm Objective

I Linear autoencoder performs low-rank approximation

rank(F) ≤ min{rank(C), rank(D)} ≤ k

I Are there limits on the reconstruction quality achievable?

I Data matrix X = [x1 . . .xn] and approximations X̂ := [x̂1 . . . x̂n]

J(θ) =
1

2n

n∑
i=1

‖xi − x̂i(θ)‖2 =
1

2n
‖X− X̂(θ)‖2F ,

where ‖A‖F := ‖vec(A)‖2 =
√∑

ij

a2ij (Frobenius norm)



Eckart-Young Theorem

I Eckart-Young theorem: for k ≤ min{m,n}

argmin
X̂:rank(X̂)=k

‖X− X̂‖2F = U Σk V>

I X = U Σ V> is the Singular Value Decomposition of X

I Σk is the truncated diagonal matrix of singular values

I minimal reconstruction loss minθ J(θ) =
∑min{n,m}
l=k+1 σ2

l .

I Optimal rank k approximation: can be obtained via Singular
Value Decomposition (SVD)

I C. Eckart, G. Young, The approximation of one matrix by another
of lower rank. Psychometrika, Volume 1, 1936
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Singular Value Decomposition

I Any m× n matrix A can be decomposed into

A

m× n

= U

m×m

· Σ

m× n

· V>

n× n

I with U, V orthogonal, i.e. UU> = Im, VV> = In.

I and with Σ diagonal, s := min{m,n}

Σ = diag(σ1, . . . , σs), σ1 ≥ · · · ≥ σs ≥ 0

I “diagonal” ' padded w/ zeros to match dimensionality



Singular Vectors and Values

I Columns of U and V: left/right singular vectors

I Entries of Σ: singular values

I number of distinct singular values ≤ s = min{n,m}
I σi with two (or more) linearly independent left (or right) singular

vectors = degenerate

I Uniqueness / ambiguity

I singular vectors for non-degenerate σi: unique up to sign

I singular vectors for degenerate σi: orthonormal basis (non-unique)
of span (unique)

I Rank and SVD (exercise)

rank(A) = r ⇐⇒ σr > 0 ∧ σr+1 = σr+2 = · · · = 0
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Optimal Linear Autoencoder via SVD

I Given data X ∈ Rm×n with SVD X = UΣV>.

I Define Uk := [u1u2 . . .uk] ∈ Rm×k the first k columns of U

I C∗ = U>k and D∗ = Uk yields minimal reconstruction error for a
linear autoencoder with k hidden units.

I proof:

X̂ = D∗C∗X = UkU
>
k

(
UΣV>

)
= Uk

[
Ik 0

]
Σ V>

= U

[
Ik 0
0 0

]
Σ V> = UΣkV

> = optimal (by EY)

I for any A ∈ GL(m): C = AU>k and D = UkA
−1 are also optimal

I =⇒ low-dimensional representation z has limited interpretability



Weight Sharing

I Corollary: weight sharing D = C> w/o reducing modeling power

I Reduces ambiguity: A−1 = A>, i.e. A ∈ O(m) (orthogonal
group)

I =⇒ mapping x 7→ z uniquely determined up to rotations
(permutations, reflections)

Next week: principal component analysis, algorithms
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