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Section 1

1D Linear Case



Line in R™

P Let us try to understand linear dimension reduction in a principled
manner. For ease of presentation: start with 1 dimension

» Parametric form of a line in R™

p+Ru={veR":3z€R sit. v=p+zu}

> u: offset or shift
> u: direction vector, ||ul| =1
> |- or [ - [l2: Euclidean vector norm, [|v||* = 37, v? = (v, V)

» (-,-): inner or dot product, (u,v) =u'v = > Ujv;



Orthogonal Projection (1 of 2)

> Approximate data point x € R™ by a point on the line
» minimize (squared) Euclidean distance
» formally:

Dimension Reduction < argmin ||p 4 zu — x||?
z€R

or

Reconstruction < arg min ||x — x||?
x€Ep+Ru

» We know the answer! ¢



Orthogonal Projection (1 of 2)

> Approximate data point x € R™ by a point on the line
» minimize (squared) Euclidean distance
» formally:

Dimension Reduction < argmin ||p 4 zu — x||?
z€R

or

Reconstruction < arg min ||x — x||?
x€Ep+Ru

»> We know the answer! € Orthogonal projection.



Orthogonal Projection (2 of 2)

» Warm-up exercise: first order optimality condition

d
%Hp—l—zu—xHQ:Z(u—{—zu—x,u);0

= (u,u)zé<x—u,u>

[[ufl>=1
» Solution(s):
z=(x—p,u)
Xx=p+(x—pu)u

» Procedure: (1) shift by —u, (2) project onto u, (3) shift back by p



Optimal Line: Formulation

> Assume we are given data points {x1,...,x,} C R™.

» What is their optimal approximation by a line?

» use orthogonal projection result

(u, p) 4 arg min *ZIIM ,u)u —x|?

7}(1

: ;éuo—mﬂ) -

> some simple algebra

> exploit identity (v,u)u = (uu')v



| minus U2?

» What does this matrix represent? (I — uuT)

> in general: a matrix represents a linear map (in specific basis)

> Specifically: take argument v, we get (by associativity)

(I - uuT> v=v—(uviu
~——
projection

P so this is the vector itself minus the projection to the line Ru

> which is the projection to the orthogonal complement (Ru)*

> it is idempotent, because

(uu') [v — (u,v)u] = (u,v)u — (u,v)u =0



Optimal Line: Solving for u

> First order optimality condition for p
! 1 < T !
Vul]=0 <:>n2<1—uu >(Xi_U):
1=
— (I—uuT> lZn:x L (I—uuT)
n 2 i = K

» does not determine p uniquely €



Optimal Line: Solving for u

> First order optimality condition for p
! 1 < T !
Vul]=0 <:>n2<l—uu >(Xi—/,l,)=0
1=
— (I—uuT> lZn:x < (I—uuT)
n 2 i = K

» does not determine p uniquely €

> however, there is a unique (simultaneous) solution for all u:

n
1
n=— E X; = sample mean
n
i=1



Optimal Line: Conclusion #1

» By centering the data:
1 n
X; < X; — E z;xi
i=

restrict to linear (instead of affine) subspaces
identify center of mass of data with origin

simplifies derivations and analyses w/o loss in modeling power

vV v vy

w.l.0.g.: assume data points are centered



Optimal Line: Solving for u (1 of 3)

» We are left with

1 n
u < argmin —Z:Wu,xi)u—xi]]2
lufl=1 |™ =

» Expanding the squared norm

» general formula
v =w|?=(v—wv—w)=[v]* + w]* - 2(v,w)
> yields: const — (u,x)? as

I, x)ul]? = (u,x)?
[|x||? = const.

72<<u7 X>ua X> = *2<ll, X>2



Optimal Line: Solving for u (2 of 3)

> We can equivalently solve

u  argmax lrlz Z(u,x,}QI = [uT <le me?) u]

flufj=1 i=1
> Key statistics: variance-covariance matrix of the data sample

== sz *fXXTERmxm X =[x1...-Xp]



Optimal Line: Solving for u (3 of 3)

» Constrained optimization with Lagrange multiplier A

L(u,\) =u' Zu— \(u,u)

» Minimize over u = u is an eigenvector of 3, because
Vul(u, ) = 2(Zu — Au)
Val(u,\) =0 <= Su=\u

> Maximize over A\ = u is a principal eigenvector of X

(one with the largest eigenvalue \ - why?)



Linear Algebra: Eigen-{Values & Vectors}

> Let A be a squared matrix, A € R™*™,
» u is an eigenvector of A, if exists A € R such that Au = Au
» such a )\ is called an eigenvalue
> if u is eigenvector with eigenvalue A, so is any au with o € R
» A is called positive semi-definite, if

vIAV>0 (Vv)
> If A = B'B for some B € R™*™ then A is p.s.d.

vl (BTB) v=(Bv) (Bv) = |Bv|? >0



Optimal Line: Conclusion #2

» Optimal direction = principal eigenvector of the sample
variance-covariance matrix

» Extremal characterization

u < arg max [VTEV}
vi|lvl|=1



Variance Maximization

» Re-interpret in term of variance maximization in 1d representation
Var[z Zz Z (x;,u)2 =u' Zu
i=1

» remember: we subtracted the mean

P> same objective as before

» Direction of smallest reconstruction error <

Direction of largest data variance



Section 2

Principal Component Analysis



Residual Problem

» Residual: projection to (Ru)*

r,  =X; — )~(l = <I — uuT> X;
» Variance-covariance matrix of residual vectors
1 & 1 & T
— Z rir] = - Z (I — uuT> XX, (I - uuT)
gt i3
-
= (I — uuT> by (I — uuT)

=Y —-23u u—rjtuu—rZ]uu—r =3 \uu'
A A
=AU =



Iterative View

» What does this mean? Note that

(2—/\uuT)u:)\u—)\u:O

P> so u is now an eigenvector with eigenvalue 0
» Because X is p.s.d., all eigenvalues are non-negative

» Repeating the above procedure:
» we find the principal eigenvector of (2 — )\uuT)
» which is the 2nd principal eigenvector of 3
» we keep iterating to identify the d principal eigenvectors of X
>

eigenvectors are guaranteed to be pairwise orthogonal



Diagonalization

> Let us take a matrix view (to complement the iterative one ...)
» 3. can be diagonalized by orthogonal matrices
S =UAU", A=diag(\,..., \n), M >-->Ap
where U is an orthogonal matrix (unit length, orthogonal columns)

U:(u1 us ... um),

UTuZ- = €, Eui = )\iui

i.e. the columns are eigenvectors (form an eigenvector basis).



Results from Linear Algebra

> 3 is symmetric, 3 = »T
> obvious as o, = L 37 @i,
» Spectral Theorem: Matrix A is diagonalizable by an orthogonal
matrix if and only if it is symmetric
» U orthogonal: UTU =UUT =1 (i.e. transpose = inverse )
» columns are normalized and orthogonal: (u;,ux) = d;
» Theorem: Distinct eigenvalues of symmetric matrices have
orthogonal eigenvectors

uIAUQ = <u1, )\2112) sygm uQTAul = <UQ, )\1u1)

— (A — o) (ug, up) = 02222 (g, ) = 0



PCA: Final Answer

» What is the optimal reduction to d dimensions?

» diagonalize 3 and pick the d principal eigenvectors

U=(u ... ug), d<m

» dimension reduction

Z= U' X eR&"
~~ =~
eRdxm ERMXn

> What is the optimal reconstruction in d dimensions?

» use eigenbasis

X=UZ= UUT X
N——"

projection
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Algorithms & Interpretation



Power Method

» Simple algorithm for finding dominant eigenvector of A

» Power iteration

AVt
V = —
LT A

» assumptions: (uy,vo) # 0 and [A1] > |);] (V5 > 2)

» Then it follows:

lim v; = w3
t—o00

> recover A\; from Rayleigh quotient A1 = lim; o ||Av¢]|/|| V]|



Power Method: Proof Sketch

» Focus on ¥ (p.s.d. and symmetric): eigenbasis {uy, ...

m
Vo = E a4y, (03] 750

» Evolution equation:

1 & )\oq "o !

> as \;/A\ <1 and thus ¢; = Mg (as |Jui| =1)

;U }



Digits Example

» Mean vector and first four principal directions:

Mean AL =34-10° Ao =2.8-10° A3 =2.4-10° A =1.6-10°

217 1D133

» Eigenvalue spectrum (left), and approximation error (right):
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Model Selection in PCA

Lr f-Knee

(0] 200

» Eigenvalue spectrum: can help determine intrinsic dimensionality

» Heuristic: detect "knee” in eigenspectrum (= dimension)



Comparison w/ Linear Autoencoder Network

> PCA clarifies that one should (ideally) center the data

» PCA representation is unique (if no eigenvalue multiplicities) and
as such (in principle) interpretable

» Linear autoencoder w/o weight sharing is highly non-interpretable
(lack of identifiability)

» Linear autoencoder w/ weight sharing: A = BT only identifies a
subspace, but axis are non-identifiable

P can an autoencoder be modified to identify the principle axes?

» General lesson: caution with naively interpreting learned (neural)
representations



Algorithms: Comparison

» Compute PCA one component at a time via power iterations:
good for small k, conceptually easy and robust

» Train a linear autoencoder via backpropagation (see subsequent
lecture): easily extensible, stochastic optimization

» Compute PCA from SVD: good for mid-sized problems, can
leverage wealth of numerical techniques for SVD (e.g. QR
decomposition)



PCA via SVD (1 of 3)

» Can compute eigen-decomposition of AA T via SVD
» straightforward calculation
AAT = (UDV') (VD'UT)

=UD-I,-D" U =UAU"T
N————

where eigenvalues relate to singular values

N = o? for1<i<min{m,n}
‘o formn<i<m



PCA via SVD (2 of 3)

» Similarly ATA = VA’V where

A =diag(\},...,\), M=

1

Ai for 1 <i < min{m,n}
0 form<i<n

» Interpretation
» columns of U: eigenvectors of AAT
> columns of V: eigenvectors of AT A
> eigenvalues: A and A’ (identical up to zero padding)
» A=DD' e R™*™

> A/ — DTD c Rnxn



PCA via SVD (3 of 3)

» Assume that X is a centered data matrix

» SVD of X can be used to compute eigendecomposition of X

> variance-covariance matrix: ¥ = 1 XX

» often n > m: reduced SVD sufficient



