Computational Intelligence Laboratory Lecture 2 Principal Component Analysis

Thomas Hofmann

ETH Zurich – <cil.inf.ethz.ch>

28 February 2020

K ロ ▶ K d B → K X B → N D B → D Q Q + 1/1

Section 1

1[D Linear Case](#page-1-0)

2/1

Line in \mathbb{R}^m

- \blacktriangleright Let us try to understand linear dimension reduction in a principled manner. For ease of presentation: start with 1 dimension
- Parametric form of a line in \mathbb{R}^m

$$
\boldsymbol{\mu} + \mathbb{R}\mathbf{u} \equiv \{\mathbf{v} \in \mathbb{R}^m : \exists z \in \mathbb{R} \text{ s.t. } \mathbf{v} = \boldsymbol{\mu} + z\mathbf{u}\}
$$

- \blacktriangleright μ : offset or shift
- \triangleright u: direction vector, $\|\mathbf{u}\| = 1$

 $\blacktriangleright \|\cdot\|$ or $\|\cdot\|_2$: Euclidean vector norm, $\|\mathbf{v}\|^2 = \sum_j v_j^2 = \langle \mathbf{v}, \mathbf{v} \rangle$

3/1

 $\blacktriangleright \langle \cdot, \cdot \rangle$: inner or dot product, $\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u}^{\top} \mathbf{v} = \sum_j u_j v_j$

Orthogonal Projection (1 of 2)

Approximate data point $\mathbf{x} \in \mathbb{R}^m$ by a point on the line

 \blacktriangleright minimize (squared) Euclidean distance

 \blacktriangleright formally:

Dimension Reduction $\mathcal{L} = \argmin_{x \in \mathbb{R}^m} ||\boldsymbol{\mu} + z \mathbf{u} - \mathbf{x}||^2$ z∈R

or

$$
\text{Reconstruction} \quad \leftarrow \underset{\hat{\mathbf{x}} \in \boldsymbol{\mu} + \mathbb{R}\mathbf{u}}{\arg \min} \|\hat{\mathbf{x}} - \mathbf{x}\|^2
$$

▶ We know the answer! *****

4/ 미 ▶ 4/ 레 ▶ 4/ 로 ▶ 4/ 로 ▶ 수 로 → 9/ 이익(연 + 4/1)

Orthogonal Projection (1 of 2)

Approximate data point $\mathbf{x} \in \mathbb{R}^m$ by a point on the line

 \blacktriangleright minimize (squared) Euclidean distance

 \blacktriangleright formally:

Dimension Reduction $\mathcal{L} = \argmin_{x \in \mathbb{R}^m} ||\boldsymbol{\mu} + z \mathbf{u} - \mathbf{x}||^2$ z∈R

or

4/ 미 ▶ 4/ 레 ▶ 4/ 로 ▶ 4/ 로 ▶ 수 로 → 9/ 이익(연 + 4/1)

$$
\text{Reconstruction} \quad \leftarrow \underset{\hat{\mathbf{x}} \in \boldsymbol{\mu} + \mathbb{R}\mathbf{u}}{\arg \min} \|\hat{\mathbf{x}} - \mathbf{x}\|^2
$$

 \triangleright We know the answer! \triangleright Orthogonal projection.

Orthogonal Projection (2 of 2)

 \triangleright Warm-up exercise: first order optimality condition

$$
\frac{d}{dz} \|\boldsymbol{\mu} + z\mathbf{u} - \mathbf{x}\|^2 = 2\langle \boldsymbol{\mu} + z\mathbf{u} - \mathbf{x}, \mathbf{u} \rangle \stackrel{!}{=} 0
$$

$$
\iff \langle \mathbf{u}, \mathbf{u} \rangle z \stackrel{!}{=} \langle \mathbf{x} - \boldsymbol{\mu}, \mathbf{u} \rangle
$$

$$
\|\mathbf{u}\|^2 = 1
$$

 \blacktriangleright Solution(s):

$$
z = \langle \mathbf{x} - \boldsymbol{\mu}, \mathbf{u} \rangle
$$

$$
\hat{\mathbf{x}} = \boldsymbol{\mu} + \langle \mathbf{x} - \boldsymbol{\mu}, \mathbf{u} \rangle \mathbf{u}
$$

 \triangleright Procedure: (1) shift by $-\mu$, (2) project onto u, (3) shift back by μ

Optimal Line: Formulation

- Assume we are given data points $\{\mathbf x_1,\ldots,\mathbf x_n\}\subset\mathbb R^m$.
- \triangleright What is their optimal approximation by a line?
	- \blacktriangleright use orthogonal projection result

$$
(\mathbf{u}, \boldsymbol{\mu}) \leftarrow \arg \min \left[\frac{1}{n} \sum_{i=1}^{n} \|\underbrace{\boldsymbol{\mu} + \langle \mathbf{x}_i - \boldsymbol{\mu}, \mathbf{u} \rangle \mathbf{u}}_{=\hat{\mathbf{x}}_i} - \mathbf{x}_i\|^2 \right]
$$

$$
= \left[\frac{1}{n} \sum_{i=1}^{n} \left\| \left(\mathbf{I} - \mathbf{u} \mathbf{u}^\top \right) (\mathbf{x}_i - \boldsymbol{\mu}) \right\|^2 \right]
$$

4 ロ ▶ 4 @ ▶ 4 할 ▶ 4 할 ⊁ → 할 → 9 Q Q + 6/1

 \triangleright some simple algebra

$$
\blacktriangleright \text{ exploit identity } \langle \mathbf{v}, \mathbf{u} \rangle \mathbf{u} = (\mathbf{u} \mathbf{u}^{\top}) \mathbf{v}
$$

I minus U2?

▶ What does this matrix represent? $(I - uu^T)$

 \triangleright in general: a matrix represents a linear map (in specific basis)

 \triangleright Specifically: take argument v, we get (by associativity)

$$
\left(\mathbf{I} - \mathbf{u}\mathbf{u}^\top\right)\mathbf{v} = \mathbf{v} - \underbrace{\langle \mathbf{u}, \mathbf{v} \rangle \mathbf{u}}_{\text{projection}}
$$

- \triangleright so this is the vector itself minus the projection to the line \mathbb{R} u
- ightharpoonup which is the projection to the orthogonal complement $(\mathbb{R}\mathbf{u})^{\perp}$
- \blacktriangleright it is idempotent, because

$$
(\mathbf{u}\mathbf{u}^{\top})\left[\mathbf{v}-\langle\mathbf{u},\mathbf{v}\rangle\mathbf{u}\right]=\langle\mathbf{u},\mathbf{v}\rangle\mathbf{u}-\langle\mathbf{u},\mathbf{v}\rangle\mathbf{u}=\mathbf{0}
$$

7/1

Optimal Line: Solving for μ

First order optimality condition for μ

$$
\nabla_{\mu}[\cdot] \stackrel{!}{=} 0 \iff \frac{1}{n} \sum_{i=1}^{n} (\mathbf{I} - \mathbf{u} \mathbf{u}^{\top}) (\mathbf{x}_{i} - \mu) \stackrel{!}{=} 0
$$

$$
\iff (\mathbf{I} - \mathbf{u} \mathbf{u}^{\top}) \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} \stackrel{!}{=} (\mathbf{I} - \mathbf{u} \mathbf{u}^{\top}) \mu
$$

 $A \Box A + 4 \Box B + 4 \Box B$

 \triangleright does not determine μ uniquely $\ddot{\cdot}$

Optimal Line: Solving for μ

First order optimality condition for μ

$$
\nabla_{\mu}[\cdot] \stackrel{!}{=} 0 \iff \frac{1}{n} \sum_{i=1}^{n} (\mathbf{I} - \mathbf{u} \mathbf{u}^{\top}) (\mathbf{x}_{i} - \mu) \stackrel{!}{=} 0
$$

$$
\iff (\mathbf{I} - \mathbf{u} \mathbf{u}^{\top}) \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} \stackrel{!}{=} (\mathbf{I} - \mathbf{u} \mathbf{u}^{\top}) \mu
$$

- \triangleright does not determine μ uniquely \cdot
- \triangleright however, there is a unique (simultaneous) solution for all \mathbf{u} :

$$
\mu = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i \quad \equiv \quad \text{sample mean}
$$

4/ 미 ▶ 4/ 메 ▶ 4/ 메 ≯ 4/ 메 ≯ 사 코 ▶ → 코 → 수이(연 + 8/1)

Optimal Line: Conclusion #1

 \blacktriangleright By centering the data:

$$
\mathbf{x}_i \leftarrow \mathbf{x}_i - \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i
$$

- \triangleright restrict to linear (instead of affine) subspaces
- \blacktriangleright identify center of mass of data with origin
- \triangleright simplifies derivations and analyses w/o loss in modeling power

4 ロ ▶ 4 @ ▶ 4 할 ▶ 4 할 ▶ | 할 | + 9 Q Q + 9/1

 \triangleright w.l.o.g.: assume data points are **centered**

Optimal Line: Solving for u (1 of 3)

 \triangleright We are left with

$$
\mathbf{u} \leftarrow \underset{\|\mathbf{u}\|=1}{\arg\min} \left[\frac{1}{n}\sum_{i=1}^{n} \| \langle \mathbf{u}, \mathbf{x}_i \rangle \mathbf{u} - \mathbf{x}_i \|^2 \right]
$$

 \blacktriangleright Expanding the squared norm

 \blacktriangleright general formula

$$
\|\mathbf{v} - \mathbf{w}\|^2 = \langle \mathbf{v} - \mathbf{w}, \mathbf{v} - \mathbf{w} \rangle = \|\mathbf{v}\|^2 + \|\mathbf{w}\|^2 - 2\langle \mathbf{v}, \mathbf{w} \rangle
$$

► yields: const $-\langle u, x \rangle^2$ as

$$
\|\langle \mathbf{u}, \mathbf{x} \rangle \mathbf{u}\|^2 = \langle \mathbf{u}, \mathbf{x} \rangle^2
$$

$$
\|\mathbf{x}\|^2 = \text{const.}
$$

$$
-2\langle \langle \mathbf{u}, \mathbf{x} \rangle \mathbf{u}, \mathbf{x} \rangle = -2\langle \mathbf{u}, \mathbf{x} \rangle^2
$$

10 → 1日 → 1월 → 1월 → 1월 → 990 + 10/1

Optimal Line: Solving for u (2 of 3)

 \blacktriangleright We can equivalently solve

$$
\mathbf{u} \leftarrow \arg \max_{\|\mathbf{u}\|=1} \left[\frac{1}{n} \sum_{i=1}^n \langle \mathbf{u}, \mathbf{x}_i \rangle^2 \right] = \left[\mathbf{u}^\top \left(\frac{1}{n} \sum_{i=1}^n \mathbf{x}_i \mathbf{x}_i^\top \right) \mathbf{u} \right]
$$

 \triangleright Key statistics: variance-covariance matrix of the data sample

$$
\mathbf{\Sigma} \equiv \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i \mathbf{x}_i^{\top} = \frac{1}{n} \mathbf{X} \mathbf{X}^{\top} \in \mathbb{R}^{m \times m}, \quad \mathbf{X} \equiv [\mathbf{x}_1 \dots \mathbf{x}_n]
$$

 $11/1$

Optimal Line: Solving for u (3 of 3)

 \triangleright Constrained optimization with Lagrange multiplier λ

$$
\mathcal{L}(\mathbf{u}, \lambda) = \mathbf{u}^\top \Sigma \mathbf{u} - \lambda \langle \mathbf{u}, \mathbf{u} \rangle
$$

In Minimize over $u \implies u$ is an **eigenvector** of Σ , because

$$
\nabla_{\mathbf{u}} \mathcal{L}(\mathbf{u}, \lambda) = 2(\Sigma \mathbf{u} - \lambda \mathbf{u})
$$

$$
\nabla_{\mathbf{u}} \mathcal{L}(\mathbf{u}, \lambda) \stackrel{!}{=} 0 \iff \Sigma \mathbf{u} = \lambda \mathbf{u}
$$

10 → 1日 → 1월 → 1월 → 1월 → 990 + 12/1

► Maximize over $\lambda \implies u$ is a **principal** eigenvector of Σ (one with the largest eigenvalue λ - why?)

Linear Algebra: Eigen-{Values & Vectors}

- In Let A be a squared matrix, $A \in \mathbb{R}^{m \times m}$.
- **If** u is an eigenvector of A, if exists $\lambda \in \mathbb{R}$ such that $Au = \lambda u$
- \blacktriangleright such a λ is called an **eigenvalue**
- If u is eigenvector with eigenvalue λ , so is any α u with $\alpha \in \mathbb{R}$
- \blacktriangleright A is called **positive semi-definite**, if

$$
\mathbf{v}^\top \mathbf{A} \mathbf{v} \ge 0 \quad (\forall \mathbf{v})
$$

If $\mathbf{A} = \mathbf{B}^{\top} \mathbf{B}$ for some $\mathbf{B} \in \mathbb{R}^{n \times m}$, then \mathbf{A} is p.s.d.

$$
\mathbf{v}^\top \left(\mathbf{B}^\top \mathbf{B} \right) \mathbf{v} = \left(\mathbf{B} \mathbf{v} \right)^\top \left(\mathbf{B} \mathbf{v} \right) = \|\mathbf{B} \mathbf{v}\|^2 \ge 0
$$

10 → 1日 → 1월 → 1월 → 1월 → 990 + 13/1

Optimal Line: Conclusion #2

 \triangleright Optimal direction = **principal eigenvector** of the sample variance-covariance matrix

 \blacktriangleright Extremal characterization

$$
\mathbf{u} \leftarrow \mathop{\arg\max}\limits_{\mathbf{v}: \|\mathbf{v}\|=1}\left[\mathbf{v}^\top \mathbf{\Sigma} \mathbf{v}\right]
$$

14/12 14/12 14/12 14/12 14/12 14/12 14/12 14/12 14/12

Variance Maximization

 \triangleright Re-interpret in term of variance maximization in 1d representation

$$
\text{Var}[z] = \frac{1}{n} \sum_{i=1}^{n} z_i^2 = \frac{1}{n} \sum_{i=1}^{n} \langle \mathbf{x}_i, \mathbf{u} \rangle^2 = \mathbf{u}^\top \Sigma \mathbf{u}
$$

10 → 1日 → 1월 → 1월 → 1월 → 990 + 15/1

- \blacktriangleright remember: we subtracted the mean
- \blacktriangleright same objective as before
- Direction of smallest reconstruction error \iff Direction of largest data variance

Section 2

[Principal Component Analysis](#page-17-0)

 $\begin{picture}(100,100)(-0.000,0.000) \put(0,0){\line(1,0){10}} \put(10,0){\line(1,0){10}} \put(10,0){\line(1,0){10}} \put(10,0){\line(1,0){10}} \put(10,0){\line(1,0){10}} \put(10,0){\line(1,0){10}} \put(10,0){\line(1,0){10}} \put(10,0){\line(1,0){10}} \put(10,0){\line(1,0){10}} \put(10,0){\line(1,0){10}} \put(10,0){\line(1,0){$

Residual Problem

Residual: projection to $(\mathbb{R} \mathbf{u})^{\perp}$

$$
\mathbf{r}_i := \mathbf{x}_i - \tilde{\mathbf{x}}_i = \left(\mathbf{I} - \mathbf{u}\mathbf{u}^\top\right)\mathbf{x}_i
$$

 \blacktriangleright Variance-covariance matrix of residual vectors

$$
\frac{1}{n} \sum_{i=1}^{n} \mathbf{r}_{i} \mathbf{r}_{i}^{\top} = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{I} - \mathbf{u} \mathbf{u}^{\top}) \mathbf{x}_{i} \mathbf{x}_{i}^{\top} (\mathbf{I} - \mathbf{u} \mathbf{u}^{\top})^{\top}
$$

$$
= (\mathbf{I} - \mathbf{u} \mathbf{u}^{\top}) \Sigma (\mathbf{I} - \mathbf{u} \mathbf{u}^{\top})^{\top}
$$

$$
= \Sigma - 2 \sum_{i} \mathbf{u}_{i} \mathbf{u}^{\top} + \mathbf{u} \underbrace{\mathbf{u}^{\top} \Sigma \mathbf{u}}_{= \lambda} \mathbf{u}^{\top} = \Sigma - \lambda \mathbf{u} \mathbf{u}^{\top}
$$

-
17/19 12 12 12 12 12 12 13 14 15 17 12 12 12 12 12 12 13 14 15 17 14 15 17 14 15 16 17 12 13 14 15 16 17 16 1

Iterative View

 \blacktriangleright What does this mean? Note that

$$
\left(\mathbf{\Sigma} - \lambda \mathbf{u} \mathbf{u}^{\top}\right) \mathbf{u} = \lambda \mathbf{u} - \lambda \mathbf{u} = 0
$$

 \triangleright so **u** is now an eigenvector with eigenvalue 0

- \triangleright Because Σ is p.s.d., all eigenvalues are non-negative
- \blacktriangleright Repeating the above procedure:
	- ightharpoonup we find the principal eigenvector of $(\mathbf{\Sigma} \lambda \mathbf{u} \mathbf{u}^{\top})$
	- In which is the 2nd principal eigenvector of Σ
	- \triangleright we keep iterating to identify the d principal eigenvectors of Σ
	- \blacktriangleright eigenvectors are guaranteed to be pairwise orthogonal

Diagonalization

In Let us take a matrix view (to complement the iterative one ...)

 \blacktriangleright Σ can be **diagonalized** by **orthogonal matrices**

$$
\Sigma = \mathbf{U}\mathbf{\Lambda}\mathbf{U}^{\top}, \quad \mathbf{\Lambda} = \text{diag}(\lambda_1,\ldots,\lambda_m), \quad \lambda_1 \geq \cdots \geq \lambda_m
$$

where U is an orthogonal matrix (unit length, orthogonal columns)

$$
\mathbf{U} = \begin{pmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \dots & \mathbf{u}_m \end{pmatrix},
$$

$$
\mathbf{U}^\top \mathbf{u}_i = \mathbf{e}_i, \quad \mathbf{\Sigma} \mathbf{u}_i = \lambda_i \mathbf{u}_i
$$

19 - 19 - 12 - 12 - 2 - 2 4 - 2 19/1

i.e. the columns are eigenvectors (form an eigenvector basis).

Results from Linear Algebra

 \blacktriangleright Σ is symmetric, $\Sigma = \Sigma^{\top}$

$$
\bullet \text{ obvious as } \sigma_{jk} = \frac{1}{n} \sum_{i} x_{ij} x_{ik}
$$

 \triangleright Spectral Theorem: Matrix A is diagonalizable by an orthogonal matrix if and only if it is symmetric

$$
\blacktriangleright \textbf{ U orthogonal: } \mathbf{U}^\top \mathbf{U} = \mathbf{U} \mathbf{U}^\top = \mathbf{I} \text{ (i.e. transpose = inverse)}
$$

D columns are normalized and orthogonal: $\langle \mathbf{u}_i, \mathbf{u}_k \rangle = \delta_{ik}$

 \triangleright Theorem: Distinct eigenvalues of symmetric matrices have orthogonal eigenvectors

$$
\mathbf{u}_1^{\top} \mathbf{A} \mathbf{u}_2 = \langle \mathbf{u}_1, \lambda_2 \mathbf{u}_2 \rangle \stackrel{\text{symm}}{=} \mathbf{u}_2^{\top} \mathbf{A} \mathbf{u}_1 = \langle \mathbf{u}_2, \lambda_1 \mathbf{u}_1 \rangle
$$

$$
\implies (\lambda_1 - \lambda_2) \langle \mathbf{u}_1, \mathbf{u}_2 \rangle = 0 \stackrel{\lambda_1 \neq \lambda_2}{\longrightarrow} \langle \mathbf{u}_1, \mathbf{u}_2 \rangle = 0
$$

4 ロ ▶ 4 레 ▶ 4 로 ▶ 4 로 ▶ 그로 → 9 Q Q → 20/1

PCA: Final Answer

 \blacktriangleright What is the optimal **reduction** to d dimensions?

ightharpoonalize Σ and pick the d principal eigenvectors

$$
\tilde{\mathbf{U}} = \begin{pmatrix} \mathbf{u}_1 & \dots & \mathbf{u}_d \end{pmatrix}, \ d \leq m
$$

 \blacktriangleright dimension reduction

$$
\mathbf{Z} = \underbrace{\tilde{\mathbf{U}}^{\top}}_{\in \mathbb{R}^{d \times m}} \underbrace{\mathbf{X}}_{\in \mathbb{R}^{m \times n}} \in \mathbb{R}^{d \times n}
$$

 \triangleright What is the optimal **reconstruction** in d dimensions?

 \blacktriangleright use eigenbasis

$$
\tilde{\mathbf{X}} = \tilde{\mathbf{U}}\mathbf{Z} = \underbrace{\tilde{\mathbf{U}}\tilde{\mathbf{U}}^{\top}}_{\text{projection}}\mathbf{X}
$$

21/1

Section 3

[Algorithms & Interpretation](#page-23-0)

22/1

Power Method

 \triangleright Simple algorithm for finding dominant eigenvector of A

 \blacktriangleright Power iteration

$$
\mathbf{v}_{t+1} = \frac{\mathbf{A} \mathbf{v}_{t}}{\|\mathbf{A} \mathbf{v}_{t}\|}
$$

► assumptions: $\langle \mathbf{u}_1, \mathbf{v}_0 \rangle \neq 0$ and $|\lambda_1| > |\lambda_j|$ ($\forall j \geq 2$)

 \blacktriangleright Then it follows:

$$
\lim_{t\to\infty}\mathbf{v}_t=\mathbf{u}_1
$$

23/1

► recover λ_1 from Rayleigh quotient $\lambda_1 = \lim_{t\to\infty} ||A\mathbf{v}_t|| / ||\mathbf{v}_t||$

Power Method: Proof Sketch

Focus on Σ (p.s.d. and symmetric): eigenbasis $\{u_1, \ldots, u_m\}$

$$
\mathbf{v}_0 = \sum_{j=1}^m \alpha_j \mathbf{u}_j, \quad \alpha_1 \neq 0
$$

 \blacktriangleright Evolution equation:

$$
\mathbf{v}_t = \frac{1}{c_t} \sum_{j=1}^m \alpha_j \lambda_j^t \mathbf{u}_j = \frac{\lambda_1^t \alpha_1}{c_t} \left[\mathbf{u}_1 + \sum_{j=2}^m \frac{\alpha_j}{\alpha_1} \underbrace{\left(\frac{\lambda_j}{\lambda_1}\right)^t}_{\to 0} \mathbf{u}_j \right] \stackrel{t \to \infty}{\longrightarrow} \mathbf{u}_1
$$

 \blacktriangleright as $\lambda_j/\lambda_1 < 1$ and thus $c_t \to \lambda_1^t \alpha_1$ (as $\|\mathbf{u}_1\| = 1$)

 $\begin{array}{ccccccccc} 4 & \Box & \rightarrow & 4 & \overline{\mathcal{B}} & \rightarrow & 4 & \overline{\mathcal{B}} & \rightarrow & 4 & \overline{\mathcal{B}} & \rightarrow & 24 & \overline{\mathcal{B}} & 24/1 \end{array}$

Digits Example

 \blacktriangleright Mean vector and first four principal directions:

Eigenvalue spectrum (left), and approximation error (right):

Model Selection in PCA

 \triangleright Eigenvalue spectrum: can help determine intrinsic dimensionality

 \blacktriangleright Heuristic: detect "knee" in eigenspectrum (= dimension)

Comparison w/ Linear Autoencoder Network

- \triangleright PCA clarifies that one should (ideally) center the data
- \triangleright PCA representation is unique (if no eigenvalue multiplicities) and as such (in principle) interpretable
- \triangleright Linear autoencoder w/o weight sharing is highly non-interpretable (lack of identifiability)
- Inear autoencoder w/ weight sharing: $\mathbf{A} = \mathbf{B}^{\top}$ only identifies a subspace, but axis are non-identifiable
	- \triangleright can an autoencoder be modified to identify the principle axes?
- ▶ General lesson: caution with naïvely interpreting learned (neural) representations

Algorithms: Comparison

- \triangleright Compute PCA one component at a time via **power iterations**: good for small k , conceptually easy and robust
- \triangleright Train a linear autoencoder via **backpropagation** (see subsequent lecture): easily extensible, stochastic optimization

4 ロ ▶ 4 레 ▶ 4 로 ▶ 4 로 ▶ 그로 → 9 Q Q → 28/1

 \triangleright Compute PCA from **SVD**: good for mid-sized problems, can leverage wealth of numerical techniques for SVD (e.g. QR decomposition)

PCA via SVD (1 of 3)

 \blacktriangleright Can compute eigen-decomposition of AA^{\top} via SVD

 \blacktriangleright straightforward calculation

$$
\begin{aligned} \mathbf{A}\mathbf{A}^{\top} &= \left(\mathbf{U}\mathbf{D}\mathbf{V}^{\top}\right)\left(\mathbf{V}\mathbf{D}^{\top}\mathbf{U}^{\top}\right) \\ &= \mathbf{U}\underbrace{\mathbf{D}\cdot\mathbf{I}_\mathbf{n}\cdot\mathbf{D}^{\top}}_{\text{diag}\left(\lambda_1,...,\lambda_m\right)}\mathbf{U}^{\top} = \mathbf{U}\mathbf{\Lambda}\mathbf{U}^{\top} \end{aligned}
$$

where eigenvalues relate to singular values

$$
\lambda_i = \begin{cases} \sigma_i^2 & \text{for } 1 \le i \le \min\{m, n\} \\ 0 & \text{for } n < i \le m \end{cases}
$$

4 ロ ▶ 4 레 ▶ 4 로 ▶ 4 로 ▶ 그로 → 9 Q Q → 29/1

PCA via SVD (2 of 3)

Similarly $A^{\top}A = VA'V^{\top}$, where

$$
\mathbf{\Lambda}' = \text{diag}(\lambda'_1, \dots, \lambda'_n), \quad \lambda'_i = \begin{cases} \lambda_i & \text{for } 1 \leq i \leq \min\{m, n\} \\ 0 & \text{for } m < i \leq n \end{cases}
$$

\blacktriangleright Interpretation

- \triangleright columns of U: eigenvectors of AA^{\top}
- \triangleright columns of V: eigenvectors of $A^{\top}A$
- ightharpoonup eigenvalues: Λ and Λ' (identical up to zero padding)

$$
\blacktriangleright \ \boldsymbol{\Lambda} = \boldsymbol{\mathrm{DD}}^\top \in \mathbb{R}^{m \times m}
$$

$$
\blacktriangleright \ \Lambda' = \mathbf{D}^\top \mathbf{D} \in \mathbb{R}^{n \times n}
$$

4 ロ ▶ 4 @ ▶ 4 할 ▶ 4 할 ▶ | 할 | ⊙ Q Q + 30/1

PCA via SVD (3 of 3)

- \triangleright Assume that X is a centered data matrix
- \triangleright SVD of X can be used to compute eigendecomposition of Σ

31/1 31/1

- \blacktriangleright variance-covariance matrix: $\boldsymbol{\Sigma} = \frac{1}{n} \mathbf{X} \mathbf{X}^{\top}$
- \triangleright often $n \gg m$: reduced SVD sufficient