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Section 1

1D Linear Case
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Line in Rm

I Let us try to understand linear dimension reduction in a principled
manner. For ease of presentation: start with 1 dimension

I Parametric form of a line in Rm

µ+ Ru ≡ {v ∈ Rm : ∃z ∈ R s.t. v = µ+ zu}

I µ: offset or shift

I u: direction vector, ‖u‖ = 1

I ‖ · ‖ or ‖ · ‖2: Euclidean vector norm, ‖v‖2 =
∑
j v

2
j = 〈v,v〉

I 〈·, ·〉: inner or dot product, 〈u,v〉 = u>v =
∑
j ujvj
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Orthogonal Projection (1 of 2)

I Approximate data point x ∈ Rm by a point on the line

I minimize (squared) Euclidean distance

I formally:

Dimension Reduction ← argmin
z∈R

‖µ+ zu− x‖2

or

Reconstruction ← argmin
x̂∈µ+Ru

‖x̂− x‖2

I We know the answer! £

Orthogonal projection.
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Orthogonal Projection (2 of 2)

I Warm-up exercise: first order optimality condition

d

dz
‖µ+ zu− x‖2 = 2〈µ+ zu− x,u〉 !

= 0

⇐⇒ 〈u,u〉︸ ︷︷ ︸
‖u‖2=1

z
!
= 〈x− µ,u〉

I Solution(s):

z = 〈x− µ,u〉

x̂ = µ+ 〈x− µ,u〉u

I Procedure: (1) shift by −µ, (2) project onto u, (3) shift back by µ
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Optimal Line: Formulation

I Assume we are given data points {x1, . . . ,xn} ⊂ Rm.

I What is their optimal approximation by a line?

I use orthogonal projection result

(u,µ)← argmin

 1

n

n∑
i=1

‖µ+ 〈xi − µ,u〉u︸ ︷︷ ︸
=x̂i

−xi‖2


=

[
1

n

n∑
i=1

∥∥∥(I− uu>
)
(xi − µ)

∥∥∥2]

I some simple algebra

I exploit identity 〈v,u〉u = (uu>)v
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I minus U2?

I What does this matrix represent?
(
I− uu>

)
I in general: a matrix represents a linear map (in specific basis)

I Specifically: take argument v, we get (by associativity)(
I− uu>

)
v = v − 〈u,v〉u︸ ︷︷ ︸

projection

I so this is the vector itself minus the projection to the line Ru

I which is the projection to the orthogonal complement (Ru)⊥

I it is idempotent, because

(uu>) [v − 〈u,v〉u] = 〈u,v〉u− 〈u,v〉u = 0
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Optimal Line: Solving for µ

I First order optimality condition for µ

∇µ[·] !
= 0 ⇐⇒ 1

n

n∑
i=1

(
I− uu>

)
(xi − µ)

!
= 0

⇐⇒
(
I− uu>

) 1

n

n∑
i=1

xi
!
=
(
I− uu>

)
µ

I does not determine µ uniquely £

I however, there is a unique (simultaneous) solution for all u:

µ =
1

n

n∑
i=1

xi ≡ sample mean
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Optimal Line: Conclusion #1

I By centering the data:

xi ← xi −
1

n

n∑
i=1

xi

I restrict to linear (instead of affine) subspaces

I identify center of mass of data with origin

I simplifies derivations and analyses w/o loss in modeling power

I w.l.o.g.: assume data points are centered
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Optimal Line: Solving for u (1 of 3)

I We are left with

u← argmin
‖u‖=1

[
1

n

n∑
i=1

‖〈u,xi〉u− xi‖2
]

I Expanding the squared norm

I general formula

‖v −w‖2 = 〈v −w,v −w〉 = ‖v‖2 + ‖w‖2 − 2〈v,w〉

I yields: const− 〈u,x〉2 as

‖〈u,x〉u‖2 = 〈u,x〉2

‖x‖2 = const.

−2〈〈u,x〉u,x〉 = −2〈u,x〉2
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Optimal Line: Solving for u (2 of 3)

I We can equivalently solve

u← argmax
‖u‖=1

[
1

n

n∑
i=1

〈u,xi〉2
]
=

[
u>

(
1

n

n∑
i=1

xix
>
i

)
u

]

I Key statistics: variance-covariance matrix of the data sample

Σ ≡ 1

n

n∑
i=1

xix
>
i =

1

n
XX> ∈ Rm×m, X ≡ [x1 . . .xn]
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Optimal Line: Solving for u (3 of 3)

I Constrained optimization with Lagrange multiplier λ

L(u, λ) = u>Σu− λ〈u,u〉

I Minimize over u =⇒ u is an eigenvector of Σ, because

∇uL(u, λ) = 2(Σu− λu)

∇uL(u, λ) !
= 0 ⇐⇒ Σu = λu

I Maximize over λ =⇒ u is a principal eigenvector of Σ

(one with the largest eigenvalue λ - why?)
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Linear Algebra: Eigen-{Values & Vectors}

I Let A be a squared matrix, A ∈ Rm×m.

I u is an eigenvector of A, if exists λ ∈ R such that Au = λu

I such a λ is called an eigenvalue

I if u is eigenvector with eigenvalue λ, so is any αu with α ∈ R

I A is called positive semi-definite, if

v>Av ≥ 0 (∀v)

I If A = B>B for some B ∈ Rn×m, then A is p.s.d.

v>
(
B>B

)
v = (Bv)>(Bv) = ‖Bv‖2 ≥ 0
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Optimal Line: Conclusion #2

I Optimal direction = principal eigenvector of the sample
variance-covariance matrix

I Extremal characterization

u← argmax
v:‖v‖=1

[
v>Σv

]



15/1

Variance Maximization

I Re-interpret in term of variance maximization in 1d representation

Var[z] =
1

n

n∑
i=1

z2i =
1

n

n∑
i=1

〈xi,u〉2 = u>Σu

I remember: we subtracted the mean

I same objective as before

I Direction of smallest reconstruction error ⇐⇒
Direction of largest data variance
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Section 2

Principal Component Analysis
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Residual Problem

I Residual: projection to (Ru)⊥

ri := xi − x̃i =
(
I− uu>

)
xi

I Variance-covariance matrix of residual vectors

1

n

n∑
i=1

rir
>
i =

1

n

n∑
i=1

(
I− uu>

)
xix
>
i

(
I− uu>

)>
=
(
I− uu>

)
Σ
(
I− uu>

)>
= Σ− 2 Σu︸︷︷︸

=λu

u> + u u>Σu︸ ︷︷ ︸
=λ

u> = Σ− λuu>
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Iterative View

I What does this mean? Note that(
Σ− λuu>

)
u = λu− λu = 0

I so u is now an eigenvector with eigenvalue 0

I Because Σ is p.s.d., all eigenvalues are non-negative

I Repeating the above procedure:

I we find the principal eigenvector of
(
Σ− λuu>

)
I which is the 2nd principal eigenvector of Σ

I we keep iterating to identify the d principal eigenvectors of Σ

I eigenvectors are guaranteed to be pairwise orthogonal
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Diagonalization

I Let us take a matrix view (to complement the iterative one ...)

I Σ can be diagonalized by orthogonal matrices

Σ = UΛU>, Λ = diag(λ1, . . . , λm), λ1 ≥ · · · ≥ λm

where U is an orthogonal matrix (unit length, orthogonal columns)

U =
(
u1 u2 . . . um

)
,

U>ui = ei, Σui = λiui

i.e. the columns are eigenvectors (form an eigenvector basis).
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Results from Linear Algebra

I Σ is symmetric, Σ = Σ>

I obvious as σjk = 1
n

∑
i xijxik

I Spectral Theorem: Matrix A is diagonalizable by an orthogonal
matrix if and only if it is symmetric

I U orthogonal: U>U = UU> = I (i.e. transpose = inverse )

I columns are normalized and orthogonal: 〈uj ,uk〉 = δjk

I Theorem: Distinct eigenvalues of symmetric matrices have
orthogonal eigenvectors

u>1 Au2 = 〈u1, λ2u2〉 symm
= u>2 Au1 = 〈u2, λ1u1〉

=⇒ (λ1 − λ2)〈u1,u2〉 = 0
λ1 6=λ2
=⇒ 〈u1,u2〉 = 0
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PCA: Final Answer

I What is the optimal reduction to d dimensions?

I diagonalize Σ and pick the d principal eigenvectors

Ũ =
(
u1 . . . ud

)
, d ≤ m

I dimension reduction

Z = Ũ>︸︷︷︸
∈Rd×m

X︸︷︷︸
∈Rm×n

∈ Rd×n

I What is the optimal reconstruction in d dimensions?

I use eigenbasis

X̃ = ŨZ = ŨŨ>︸ ︷︷ ︸
projection

X
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Section 3

Algorithms & Interpretation
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Power Method

I Simple algorithm for finding dominant eigenvector of A

I Power iteration

vt+1 =
Avt
‖Avt‖

I assumptions: 〈u1,v0〉 6= 0 and |λ1| > |λj | (∀j ≥ 2)

I Then it follows:

lim
t→∞

vt = u1

I recover λ1 from Rayleigh quotient λ1 = limt→∞ ‖Avt‖/‖vt‖
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Power Method: Proof Sketch

I Focus on Σ (p.s.d. and symmetric): eigenbasis {u1, . . . ,um}

v0 =

m∑
j=1

αjuj , α1 6= 0

I Evolution equation:

vt =
1

ct

m∑
j=1

αjλ
t
juj =

λt1α1

ct

u1 +

m∑
j=2

αj
α1

(
λj
λ1

)t
︸ ︷︷ ︸
→0

uj

 t→∞−→ u1

I as λj/λ1 < 1 and thus ct → λt1α1 (as ‖u1‖ = 1)
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Digits Example

I Mean vector and first four principal directions:

Mean λ1 = 3.4 · 105 λ2 = 2.8 · 105 λ3 = 2.4 · 105 λ4 = 1.6 · 105

I Eigenvalue spectrum (left), and approximation error (right):
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Model Selection in PCA

λ i
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I Eigenvalue spectrum: can help determine intrinsic dimensionality

I Heuristic: detect “knee” in eigenspectrum (= dimension)
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Comparison w/ Linear Autoencoder Network

I PCA clarifies that one should (ideally) center the data

I PCA representation is unique (if no eigenvalue multiplicities) and
as such (in principle) interpretable

I Linear autoencoder w/o weight sharing is highly non-interpretable
(lack of identifiability)

I Linear autoencoder w/ weight sharing: A = B> only identifies a
subspace, but axis are non-identifiable

I can an autoencoder be modified to identify the principle axes?

I General lesson: caution with näıvely interpreting learned (neural)
representations
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Algorithms: Comparison

I Compute PCA one component at a time via power iterations:
good for small k, conceptually easy and robust

I Train a linear autoencoder via backpropagation (see subsequent
lecture): easily extensible, stochastic optimization

I Compute PCA from SVD: good for mid-sized problems, can
leverage wealth of numerical techniques for SVD (e.g. QR
decomposition)
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PCA via SVD (1 of 3)

I Can compute eigen-decomposition of AA> via SVD

I straightforward calculation

AA> =
(
UDV>

) (
VD>U>

)
= U D · In ·D>︸ ︷︷ ︸

diag(λ1,...,λm)

U> = UΛU>

where eigenvalues relate to singular values

λi =

{
σ2
i for 1 ≤ i ≤ min{m,n}

0 for n < i ≤ m
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PCA via SVD (2 of 3)

I Similarly A>A = VΛ′V>, where

Λ′ = diag(λ′1, . . . , λ
′
n), λ′i =

{
λi for 1 ≤ i ≤ min{m,n}
0 for m < i ≤ n

I Interpretation

I columns of U: eigenvectors of AA>

I columns of V: eigenvectors of A>A

I eigenvalues: Λ and Λ′ (identical up to zero padding)

I Λ = DD> ∈ Rm×m

I Λ′ = D>D ∈ Rn×n
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PCA via SVD (3 of 3)

I Assume that X is a centered data matrix

I SVD of X can be used to compute eigendecomposition of Σ

I variance-covariance matrix: Σ = 1
nXX>

I often n� m: reduced SVD sufficient


