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Section 1

Collaborative Filtering
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Collaborative Filtering

I Recommender systems

I analyze patterns of interest in items (products, movies, ...)

I provide personalized recommendations for users

I Collaborative Filtering

I exploit collective data from many users

I generalize across users and – possibly – across items

I Applications:

I Amazon, Netflix, Pandora, online advertising, etc.

I special case of algorithmic selection
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Netflix Data

I Input: user-item preferences stored in a matrix

I rows = users, columns = items

I 1-5 star rating of movies. x denotes a missing value.

I predict missing values = matrix completion
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Matrix Completion

I How can we fill in missing values?

I Statistical model with k � m · n parameters

I m× n: dimensionality of rating matrix

I introduces coupling between entries

I infer missing entries from observed ones

I Low Rank decomposition

I find best approximation with low rank r

I entries in decomposition: k ≤ r · (m+ n)
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Section 2

Matrix Approximation via SVD
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Frobenius Norm: revisted

I Definition: Frobenis norm

‖A‖F :=

√√√√ m∑
i=1

n∑
j=1

a2ij = ‖vec(A)‖2 =
√

trace(A>A)

I Frobenius norm only depends on singular values of A

‖A‖2F =

k∑
i=1

σ2i , k = min{m,n}

I follows from cyclic property: trace(XYZ) = trace(ZXY)

trace(A>A) = trace(VD>U>UDV>) = trace(V>VD>D)

= trace(D>D) = trace(diag(σ2
1 . . . , σ

2
k)) =

k∑
i=1

σ2
i
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Singular Values and Matrix Norms

I Induced p-norms

‖A‖p := sup{‖Ax‖p : ‖x‖p = 1}, ‖x‖p :=

(∑
i

|xi|p
)1/p

I Matrix 2-norm (spectral norm) = largest singular value

‖A‖2 = sup{‖Ax‖2 : ‖x‖2 = 1} = σ1

I assume ‖x‖2 = 1, define y := V>x, then ‖y‖2 = 1 (V orthogonal)

I define z := Dy, then ‖Ax‖2 = ‖Uz‖2 = ‖z‖2 (U orthogonal)

I hence: ‖Ax‖22 = ‖Dy‖22 =
∑k

i=1 σ
2
i y

2
i

I maximized for y = (1, 0, . . . , 0)>, maximum σ1
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Eckart–Young Theorem: revisted

I Reduced rank SVD:

optimal low rank approximation in Frobenius norm

I SVD of A = UDV>, define for k ≤ rank(A)

Ak :=

k∑
i=1

σiuiv
>
i , rank(Ak) = k

I then Ak is best Frobenius norm approximation in the sense that

min
rank(B)=k

‖A−B‖2F = ‖A−Ak‖2F =

rank(A)∑
r=k+1

σ2
r
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Spectral Norm Approximation

I Ak an optimal approximation in the sense of the spectral norm

min
rank(B)=k

‖A−B‖2 = ‖A−Ak‖2 = σk+1
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Section 3

SVD for Collaborative Filtering
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SVD of Rating Matrix: Interpretation

A = rating matrix, then ...

I k dimensional (k ≤ rank(A)) number of latent factors

I U: users-to-factor association matrix

I V: items-to-factor association matrix

I D: level of strength of each factor
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SVD For Collaborative Filtering

A = UDV>:
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0.57 0 −0.80 0.06 −0.04 −0.06 −0.04
0.46 0 0.43 0.68 −0.19 −0.23 −0.19
0.57 0 0.37 −0.70 −0.08 −0.11 −0.08
0.34 0 0.15 0.14 0.48 0.60 0.48
0 0.52 0 0 −0.71 0.35 0.28
0 0.66 0 0 0.35 −0.56 0.35
0 0.52 0 0 0.28 0.35 −0.71

 ×



15 0 0 0 0
0 10.67 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ×


0.57 0.57 0.57 0 0
0 0 0 0.70 0.70

0.81 −0.40 −0.40 0 0
0 0.70 −0.70 0 0
0 0 0 0.70 −0.70
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SVD For Collaborative Filtering

Factors: Horror, Comedy

U: users-to-factors association matrix.
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Horror

Comedy

=



0.57 0
0.46 0
0.57 0
0.34 0
0 0.52
0 0.66
0 0.52

 ×
(

15 0
0 10.67

)
×

(
0.57 0.57 0.57 0 0
0 0 0 0.70 0.70

)

Q: What is the affinity between user1 and horror? 0.57
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SVD For Collaborative Filtering

Factors: Horror, Comedy

D: weight of different factors in the data.
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Strength of Horror Strength
of Comedy

=



0.57 0
0.46 0
0.57 0
0.34 0
0 0.52
0 0.66
0 0.52

 ×
(

15 0
0 10.67

)
×

(
0.57 0.57 0.57 0 0
0 0 0 0.70 0.70

)

Q: What is the expression of the comedy concept in the data? 10.67
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SVD For Collaborative Filtering

Factors: Horror, Comedy

V: Movies-to-factor association matrix.
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0.57 0
0.46 0
0.57 0
0.34 0
0 0.52
0 0.66
0 0.52

 ×
(

15 0
0 10.67

)
×

(
0.57 0.57 0.57 0 0
0 0 0 0.70 0.70

)

Q: What is the similarity between Clerks and Horror? 0

What is the similarity between Clerks and Comedy? 0.7
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Collaborative Filtering Example II

Characterization of the users and movies using two axes - male vs.
female and serious vs. escapist.

* Ref: ”Matrix factorization techniques for recommender systems”

http://www2.research.att.com/∼volinsky/papers/ieeecomputer.pdf.
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Section 4

Alternating Least Squares
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Beyond Singular Value Decomposition

I Is SVD the final answer for (low-rank) matrix decomposition?

I Eckart-Young theorem guarantees:

Ak = arg min
rank(B)=k

‖A−B‖2F

I surprisingly: not a convex optimization problem!

I convex combination of k-rank matrices is generally not rank k

1

2

[
1 0
0 0

]
︸ ︷︷ ︸
rank 1

+
1

2

[
0 0
0 1

]
︸ ︷︷ ︸
rank 1

=
1

2

[
1 0
0 1

]
︸ ︷︷ ︸
rank 2
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Beyond Singular Value Decomposition

I Problem: entries which are unobserved – not zero!

I should optimize

min
rank(B)=k

 ∑
(i,j)∈I

(aij − bij)2
 , I = {(i, j) : observed}

I instead of

min
rank(B)=k

∑
i,j

(aij − bij)2
 = min

rank(B)=k
‖A−B‖2F

I usually: mean zero aij ← aij − 1
|I|

∑
I aij
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Hardness of Matrix Reconstruction

I Define weighted Frobenius norm with regard to matrix G ≥ 0.

‖X‖G :=

√∑
i,j

gijx2ij

I special case: gij ∈ {0, 1} (Boolean, partially observed matrix)

I Low-rank approximations are (in general) intrinsically hard

B∗
min−→ `(B) = ‖A−B‖2G, s.t. rank(B) ≤ k

I is NP-hard (Gillis & Glineur, 2011) even for k = 1.

I ... also holds for approximations with prescribed accuracy

I ... also holds for binary G
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Matrix Factorization: Non-Convex Problem

I Singular Value Decomposition is not enough!

I Non-convex optimization problem

I variant A: non-convex domain

minimize convex objective over domain Qk := {B : rank(B) = k}

I variant B: non-convex objective

re-parametrize B = UV, U ∈ Rm×k,V ∈ Rk×n

then rank(B) ≤ k by definition

e.g. f(u, v) = (a− uv)2, a 6= 0 ∧ u1v1 = u2v2 = a ∧ u1 6= u2

=⇒ f(u1, v1) = f(u2, v2) = 0 ∧ f
(
u1 + u2

2
,
v1 + v2

2

)
> 0
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Alternating Minimization

I Is there something convex about the non-convex objective?

f(U,V) =
1

|I|
∑

(i,j)∈I

(aij − 〈ui,vj〉)2

I for fixed U, f is convex in V – for fixed V, f is convex in U

I ... which does not mean f is jointly convex in U and V

I Idea: perform alternating minimization

U← arg min
U

f(U,V)

V← arg min
V

f(U,V), repeat until convergence

I f is never increased and lower bounded by 0
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Alternating Least Squares

I Alternating minimization for low-rank matrix factorization =
alternating least squares

I decompose f into subproblems for columns of V

f(U,V) =
∑
i

 ∑
j:(i,j)∈I

(aij − 〈uj ,vi〉)2


︸ ︷︷ ︸
=:f(U,vi)

I least squares problem f(U,vi) for column vi of V

I each of which can be solved independently!

I by symmetry: also holds for U↔ V
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Frobenius Norm Regularization

I Typically: regularize matrix factors U,V

I (squared) Frobenius norm regularizer

Ω(U,V) = ‖U‖2F + ‖V‖2F

I then

minimize → f(U,V) + µΩ(U,V), µ > 0

I does not change separability structure of problem
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ALS for Collaborative Filtering

I given low-dimensional representations for items

I compute for each user independently the best representation

I given low-dimensional representations for users

I compute for each item independently the best representation

I all optimization problems are least-square problems of small
dimension
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Section 5

Convex Relaxation
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Nuclear Norm

I Nuclear norm

‖A‖∗ =
∑
i

σi, σi : singular values of A

I Compare with Frobenius norm ‖A‖F =
√∑

i σ
2
i

I Or, alternatively, if we define σ(A) = (σ1, . . . , σn), then

‖A‖F = ‖σ(A)‖2 whereas ‖A‖∗ = ‖σ(A)‖1

I For a diagonal matrix D, ‖D‖∗ = Tr(D).
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Nuclear Norm Minimization

I Exact reconstruction (Boolean G)

min
B
‖B‖∗ subject to ‖A−B‖G = 0

I Approximate reconstruction

min
B
‖A−B‖2G, s.t. ‖B‖∗ ≤ r

I Lagrangian formulation

min
B

[
1
2τ ‖A−B‖2G + ‖B‖∗

]
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Nuclear Norm vs. Rank

I How does this relate to low rank approximation?

I Lower bound

rank(B) ≥ ‖B‖∗, for ‖B‖2 ≤ 1

I in fact: tightest convex lower bound (Fazel 2002)

I Convex relaxation

min
B∈Pk

‖A−B‖2G, Pk := {B : ‖B‖∗ ≤ k}

where

Pk⊇Qk = {B : rank(B) ≤ k}
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SVD Thresholding

I How to solve optimization problems involving the nuclear norm?

I Fundamental result (due to Cai, Candès & Shen, 2008)

B∗ = shrinkτ (A) := arg min
B

{
1

2
‖A−B‖2F + τ‖B‖∗

}
then with SVD A = UDV>, D = diag(σi), it holds that

B∗ = UDτV
>, Dτ = diag (max{0, σi − τ})

I note: all singular values are reduced by at least τ
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SVD Shrinkage Iterations

I SVD thresholding + projection = Shrinkage iterations

(due to Cai, Candès & Shen, 2008)

I Define projection operator with regard to index set I

Π(X) =

{
xij (i, j) ∈ I
0 otherwise

I Iterative algorithm, initialized with B0 = 0

Bt+1 = Bt + ηt Π(A− shrinkτ (Bt))

I ηt > 0: learning rate sequence
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SVD Shrinkage Iterations: Analysis

I Bt is a sequence of sparse matrices (efficiency!)

I It can be shown that1 limt→∞ shrinkτ (Bt) = B∗, the minimizer of

B∗ = arg min
B

{
‖B‖∗ +

1

2τ
‖B‖2F

}
, s.t. Π(A−B) = 0

I For small enough τ one finds a minimal nuclear-norm
approximation to A that agrees on all observed entires.

I Can be extented to ‖A−B‖G residuals (by modifying Π)

1Upon appropriate choice of step sizes.
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Exact Matrix Recovery

I Can use SVD-shrinkage iterations to solve convex relaxations.

I But: can we get any “generalization” guarantees (Π(A∗) = A)?

B∗ = arg min
B

{‖B‖∗} , s.t. Π(A−B) = 0

I suprising (deep) result: yes!

I Theorem: Exact reconstruction of rank k matrix A∗ w.h.p., if it
is strongly incoherent (parameter µ, spread of singular values), if

|I| ≥ Cµ4k2n(log n)2 ∈ Õ(n), typically µ = O(
√

log n)

I due to Candes & Tao, 2010

I explains, why ‖ · ‖∗ minimization works well in practice!


