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Section 1

Collaborative Filtering



Collaborative Filtering

» Recommender systems

> analyze patterns of interest in items (products, movies, ...

» provide personalized recommendations for users

» Collaborative Filtering

» exploit collective data from many users

» generalize across users and — possibly — across items

» Applications:

» Amazon, Netflix, Pandora, online advertising, etc.

» special case of algorithmic selection



Netflix Data

» Input: user-item preferences stored in a matrix

» rows = users, columns = items

l——— 18,000 movies ——
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P 1-5 star rating of movies. x denotes a missing value.

» predict missing values = matrix completion



Matrix Completion

» How can we fill in missing values?

» Statistical model with & < m - n parameters

> m x n: dimensionality of rating matrix
» introduces coupling between entries

» infer missing entries from observed ones

» Low Rank decomposition

» find best approximation with low rank r

> entries in decomposition: k < r - (m + n)



Section 2

Matrix Approximation via SVD



Frobenius Norm: revisted

» Definition: Frobenis norm

|AllF = ZZa = |lvec(A)|l2 = y/trace(ATA)

=1 j=1

» Frobenius norm only depends on singular values of A
k
IAIF =07, k=min{m,n}
i=1

> follows from cyclic property: trace(XYZ) = trace(ZXY)

trace(ATA) =trace(VD'U'UDV ") = trace(V' VD' D)

k
= trace(D D) = trace(diag(o?...,0})) = Z o?



Singular Values and Matrix Norms

» Induced p-norms

1/p
|Allp == sup{[|Ax|lp : [x]l, = 1}, [Ix[p == (Z Ixi!p>

» Matrix 2-norm (spectral norm) = largest singular value

[All2 = sup{[|Ax|j2 : [[x[ls = 1} = o

> assume |x||2 = 1, define y := V 'x, then ||y|l2 = 1 (V orthogonal)
» define z := Dy, then ||Ax||s = ||Uz||2 = ||z||2 (U orthogonal)

k
> hence: [ Ax||3 = [[Dyl|3 = 3_i_, o7y?

T

> maximized fory = (1,0,...,0) ', maximum o



Eckart—Young Theorem: revisted

» Reduced rank SVD:

optimal low rank approximation in Frobenius norm
> SVD of A = UDV', define for k < rank(A)

k
Ak = ZO’Z‘UZ‘V;F, rank(Ak) =k
i=1

» then Ay is best Frobenius norm approximation in the sense that
rank(A)

. 2 2
min [|A = Blp = [|[A — A% = § Ug
rank(B)=k arn il



Spectral Norm Approximation

> A, an optimal approximation in the sense of the spectral norm

ranIkI(l]g)l:k H ||2 H k||2 Ok+1
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SVD for Collaborative Filtering



SVD of Rating Matrix: Interpretation

A = rating matrix, then ...
» £k dimensional (k < rank(A)) number of latent factors
» U: users-to-factor association matrix
> V: items-to-factor association matrix

> D: level of strength of each factor



SVD For Collaborative Filtering

A =UDV':
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SVD For Collaborative Filtering

Factors: Horror, Comedy

U: users-to-factors association matrix.
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Q: What is the affinity between userl and horror? 0.57




SVD For Collaborative Filtering

Factors: Horror, Comedy

D: weight of different factors in the data.
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Q: What is the expression of the comedy concept in the data? 10.67



SVD For Collaborative Filtering

Factors: Horror, Comedy

V: Movies-to-factor association matrix.

-2
o N £ ]
S & .8 5
& N 4
R S ¥ 8
@ > N %
T

G
e”’gt
viy
(5

5 5 5 0 0 0.57
4 4 4 0 O 0.46 0
5 5 5 0 0 _ 0.57 0 \ e =
3 3 3 0 0 = 0.34 0 X D 0.
I 0 0 0 4 4 0 0.52 :
0 0 0 5 5 0 0.66
0 0 0 4 4 0 0.52 \‘
0.57 0.57
0 0

Q: What is the similarity between Clerks and Horror? 0
What is the similarity between Clerks and Comedy? 0.7




Collaborative Filtering Example Il

Characterization of the users and movies using two axes - male vs.
female and serious vs. escapist.

Serious

1 Braveheart

[Amadeus 7]
[

,", ]

Lethal Weapon
Geared Ocear's 11 |ﬁ | Geared
toward toward
=== males

females

The Princess Independence]
Diaries Day

Escapist

* Ref: "Matrix factorization techniques for recommender systems”

http://www2.research.att.com/~volinsky/papers/ieeecomputer.pdf.
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Alternating Least Squares



Beyond Singular Value Decomposition

» Is SVD the final answer for (low-rank) matrix decomposition?

» Eckart-Young theorem guarantees:

A = argmin |A — B||§;
rank(B)=Fk

» surprisingly: not a convex optimization problem!

» convex combination of k-rank matrices is generally not rank &

1ML o], 1o o] _1[t 0
210 0] 200 1} 210 1
—— = ~——

rank 1 rank 1 rank 2



Beyond Singular Value Decomposition

» Problem: entries which are unobserved — not zero!

» should optimize

ot (_Z);I(aij —bij)*| s Z={(i,j) : observed}
i,

» instead of

| 1 2
e | 22005 0P| = s 1A~ B

> usually: mean zero aij; < aij — 77 2 Gij



Hardness of Matrix Reconstruction

» Define weighted Frobenius norm with regard to matrix G > 0.

Xl := > giz%
7:7j

> special case: g;; € {0,1} (Boolean, partially observed matrix)
» Low-rank approximations are (in general) intrinsically hard
B* ™2 ¢(B) = |A - B|%, st rank(B) <k

» is NP-hard (Gillis & Glineur, 2011) even for k = 1.
» ... also holds for approximations with prescribed accuracy

» ... also holds for binary G



Matrix Factorization: Non-Convex Problem

» Singular Value Decomposition is not enough!

» Non-convex optimization problem
» variant A: non-convex domain
minimize convex objective over domain Qy := {B : rank(B) = k}
» variant B: non-convex objective
re-parametrize B=UV, U e R™¥ VvV ¢ Rk*n»
then rank(B) < k by definition
eg. f(u,v)=(a—uv)® a#0 A uvy = ugvy = a A uj # up

uy +us vy +v
:>f(u17v1):f(u%vg):0/\f( 12 2 12 2>>o




Alternating Minimization

» Is there something convex about the non-convex objective?
U.V) = 1 - v ))2
f(U,V) = m Z (aij — (i, v;))
(i,J)€L
» for fixed U, f is convex in V — for fixed V, f is convex in U
» ... which does not mean f is jointly convex in U and V
» ldea: perform alternating minimization
U «+ argmin f(U, V)
U

V « argmin f(U, V), repeat until convergence
v

> f is never increased and lower bounded by 0



Alternating Least Squares

> Alternating minimization for low-rank matrix factorization =
alternating least squares

» decompose f into subproblems for columns of V

FOVI=>"1 > (a4 — (uj,vi)?

L FHC LY

=:f(U,v;)

> least squares problem f(U,v;) for column v; of V

» each of which can be solved independently!

» by symmetry: also holds for U ++ V



Frobenius Norm Regularization

» Typically: regularize matrix factors U, V

» (squared) Frobenius norm regularizer

QU,V) = [UE + |VIE

» then

minimize — f(U,V)+pQ(U,V), p>0

» does not change separability structure of problem



ALS for Collaborative Filtering

» given low-dimensional representations for items

» compute for each user independently the best representation

» given low-dimensional representations for users

» compute for each item independently the best representation

» all optimization problems are least-square problems of small
dimension
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Convex Relaxation



Nuclear Norm

» Nuclear norm

Al = Zai, o; : singular values of A
i

» Compare with Frobenius norm ||Al|p = />, 02
» Or, alternatively, if we define o(A) = (01,...,04), then
[AllF = [lo(A)]l2 whereas [[All. = [lo(A)[lx

» For a diagonal matrix D, |D||, = Tr(D).



Nuclear Norm Minimization

» Exact reconstruction (Boolean G)

rrllginHBH* subject to ||[A — Bl||g =0

» Approximate reconstruction

min|[A -~ BJE, st [Bll. <

» Lagrangian formulation

min [ L[| A - BJ% + | B].]



Nuclear Norm vs. Rank

» How does this relate to low rank approximation?
» Lower bound

rank(B) > [|B]l«, for |Bl2 <1

> in fact: tightest convex lower bound (Fazel 2002)
» Convex relaxation

in [|[A — BJ?2 ={B:|B|, <k
Bné%!! lg: Pr:={B:|Bl. <k}

where

ProQr = {B :rank(B) < k}



SVD Thresholding

» How to solve optimization problems involving the nuclear norm?

» Fundamental result (due to Cai, Candés & Shen, 2008)
. (1 ,
B* = shrink;(A) := argmin §||A — B + 7B«
B
then with SVD A = UDV', D = diag(s;), it holds that

B =UD,V', D, = diag(max{0,0; - })

» note: all singular values are reduced by at least 7



SVD Shrinkage Iterations

» SVD thresholding + projection = Shrinkage iterations
(due to Cai, Candes & Shen, 2008)

» Define projection operator with regard to index set Z

T(X) = zi; (i,§) €L
0 otherwise

> lterative algorithm, initialized with By = 0

Biy1 = By + . II(A — shrink,(By))

» 1 > 0: learning rate sequence



SVD Shrinkage Iterations: Analysis

> B, is a sequence of sparse matrices (efficiency!)

» It can be shown that! lim; . shrink,(B;) = B*, the minimizer of
* : 1 2
B* = argmin< ||B|. + —|B|# ¢, st II(A-B)=0
B 2T

» For small enough 7 one finds a minimal nuclear-norm
approximation to A that agrees on all observed entires.

» Can be extented to |A — B||g residuals (by modifying IT)

1Upon appropriate choice of step sizes.



Exact Matrix Recovery

» Can use SVD-shrinkage iterations to solve convex relaxations.
» But: can we get any “generalization” guarantees (II(A*) = A)?

B* = argmin {|B|.}, st II(A—B)=0
B

> suprising (deep) result: yes!

» Theorem: Exact reconstruction of rank k£ matrix A* w.h.p., if it
is strongly incoherent (parameter pu, spread of singular values), if

1Z| > Cutk?*n(logn)? € O(n), typically p= O(y/logn)

» due to Candes & Tao, 2010

> explains, why || - ||« minimization works well in practice!



