Computational Intelligence Laboratory Lecture 3 Matrix Approximation & Reconstruction

Thomas Hofmann

ETH Zurich – <cil.inf.ethz.ch>

6 March 2020

K ロ ▶ K d B → K X B → N D B → D Q Q + 1/1

Section 1

[Collaborative Filtering](#page-1-0)

2/1

Collaborative Filtering

\blacktriangleright Recommender systems

- **D** analyze patterns of interest in items (products, movies, ...)
- \blacktriangleright provide personalized recommendations for users

\blacktriangleright Collaborative Filtering

- \blacktriangleright exploit collective data from many users
- **P** generalize across users and $-$ possibly $-$ across items

\blacktriangleright Applications:

 \blacktriangleright Amazon, Netflix, Pandora, online advertising, etc.

3/1

 \blacktriangleright special case of algorithmic selection

Netflix Data

 \blacktriangleright Input: user-item preferences stored in a matrix

 \triangleright rows = users, columns = items

- \blacktriangleright 1-5 star rating of movies. x denotes a missing value.
- \triangleright predict missing values = matrix completion

Matrix Completion

 \blacktriangleright How can we fill in missing values?

 \blacktriangleright Statistical model with $k \ll m \cdot n$ parameters

- \blacktriangleright $m \times n$: dimensionality of rating matrix
- \blacktriangleright introduces coupling between entries
- \triangleright infer missing entries from observed ones
- \blacktriangleright Low Rank decomposition
	- If find best approximation with low rank r
	- ightharpoontries in decomposition: $k \leq r \cdot (m+n)$

4 ロ ▶ 4 @ ▶ 4 할 ▶ 4 할 ▶ | 할 | + 9 Q @ | 5/1

Section 2

[Matrix Approximation via SVD](#page-5-0)

6/1

Frobenius Norm: revisted

Definition: **Frobenis norm**

$$
\|\mathbf{A}\|_F:=\sqrt{\sum_{i=1}^m\sum_{j=1}^n a_{ij}^2}=\|\text{vec}(\mathbf{A})\|_2=\sqrt{\text{trace}(\mathbf{A}^\top\mathbf{A})}
$$

 \triangleright Frobenius norm only depends on singular values of A

$$
\|\mathbf{A}\|_{F}^{2} = \sum_{i=1}^{k} \sigma_{i}^{2}, \quad k = \min\{m, n\}
$$

follows from cyclic property: trace(XYZ) = trace(ZXY) $trace(\mathbf{A}^{\top}\mathbf{A}) = trace(\mathbf{VD}^{\top}\mathbf{U}^{\top}\mathbf{UD}\mathbf{V}^{\top}) = trace(\mathbf{V}^{\top}\mathbf{VD}^{\top}\mathbf{D})$ $\mathcal{L} = \mathsf{trace}(\mathbf{D}^\top \mathbf{D}) = \mathsf{trace}(\mathsf{diag}(\sigma_1^2 \dots, \sigma_k^2)) = \sum^k \mathcal{L}$ $i=1$ σ_i^2

1 미 ▶ 1 레 ▶ 1 로 ▶ 1 로 ▶ 그로 → 9 이야.
7/1

Singular Values and Matrix Norms

\blacktriangleright Induced *p*-norms

$$
\|\mathbf{A}\|_{p} := \sup\{\|\mathbf{A}\mathbf{x}\|_{p} : \|\mathbf{x}\|_{p} = 1\}, \quad \|\mathbf{x}\|_{p} := \left(\sum_{i} |x_{i}|^{p}\right)^{1/p}
$$

 \triangleright Matrix 2-norm (spectral norm) = largest singular value

$$
\|\mathbf{A}\|_2 = \sup\{\|\mathbf{A}\mathbf{x}\|_2 : \|\mathbf{x}\|_2 = 1\} = \sigma_1
$$

- **E** assume $\|\mathbf{x}\|_2 = 1$, define $\mathbf{y} := \mathbf{V}^\top \mathbf{x}$, then $\|\mathbf{y}\|_2 = 1$ (V orthogonal)
- \blacktriangleright define $z := Dy$, then $||Ax||_2 = ||Uz||_2 = ||z||_2$ (U orthogonal)
- \blacktriangleright hence: $\|\mathbf{Ax}\|_2^2 = \|\mathbf{Dy}\|_2^2 = \sum_{i=1}^k \sigma_i^2 y_i^2$
- **If** maximized for $\mathbf{v} = (1, 0, \dots, 0)^\top$, maximum σ_1

Eckart–Young Theorem: revisted

▶ Reduced rank SVD

optimal low rank approximation in Frobenius norm

$$
\blacktriangleright \text{ SVD of } \mathbf{A} = \mathbf{UDV}^\top \text{, define for } k \le \text{rank}(\mathbf{A})
$$

$$
\mathbf{A}_k := \sum_{i=1}^k \sigma_i \mathbf{u}_i \mathbf{v}_i^{\top}, \quad \mathsf{rank}(\mathbf{A}_k) = k
$$

In then A_k is best Frobenius norm approximation in the sense that

$$
\min_{\text{rank}(\mathbf{B})=k} \| \mathbf{A} - \mathbf{B} \|^2_F = \| \mathbf{A} - \mathbf{A_k} \|^2_F = \sum_{r=k+1}^{\text{rank}(\mathbf{A})} \sigma_r^2
$$

4 ロ ▶ 4 @ ▶ 4 로 ▶ 4 로 ▶ - 로 - 90 Q - 9/1

Spectral Norm Approximation

 \blacktriangleright A_k an optimal approximation in the sense of the spectral norm

$$
\min_{\mathsf{rank}(\mathbf{B})=k} \| \mathbf{A} - \mathbf{B} \|_2 = \| \mathbf{A} - \mathbf{A_k} \|_2 = \sigma_{k+1}
$$

10 → 1日 → 1월 → 1월 → 1월 → 990 + 10/1

Section 3

[SVD for Collaborative Filtering](#page-10-0)

 $\begin{picture}(100,10) \put(0,0){\line(1,0){10}} \put(15,0){\line(1,0){10}} \put(15,0){\line($

SVD of Rating Matrix: Interpretation

- $A =$ rating matrix, then ...
- ▶ k dimensional $(k \leq \text{rank}(\mathbf{A}))$ number of latent factors

10 → 1日 → 1월 → 1월 → 1월 → 990 + 12/1

- \blacktriangleright U: users-to-factor association matrix
- \blacktriangleright V: items-to-factor association matrix
- \triangleright D: level of strength of each factor

 $\mathbf{A} = \mathbf{U} \mathbf{D} \mathbf{V}^\top$:

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q Q $13/1$

Factors: Horror, Comedy

U: users-to-factors association matrix.

14/14 14/14 14/14 14/14 14/14 14/14 14/14 14/14 14/14 14/14 14/14 14/14 14/14 14/14 14/14 14/14

Q: What is the affinity between user1 and horror? 0.57

Factors: Horror, Comedy

D: weight of different factors in the data.

Q: What is the expression of the comedy concept in the data? 10.67

Factors: Horror, Comedy

V: Movies-to-factor association matrix.

Q: What is the similarity between Clerks and Horror? 0 What is the similarity between Clerks and Comedy? 0.7

Collaborative Filtering Example II

Characterization of the users and movies using two axes - male vs. female and serious vs. escapist.

* Ref: "Matrix factorization techniques for recommender systems"

17/1 http://www2.research.att.com/∼volinsky/papers/ieeecompute[r.p](#page-15-0)df[.](#page-0-0)

Section 4

[Alternating Least Squares](#page-17-0)

1日 - 1日 - 1월 - 1월 - 1월 - 19 09 09 18/1

Beyond Singular Value Decomposition

In Is SVD the final answer for (low-rank) matrix decomposition?

 \blacktriangleright Eckart-Young theorem guarantees:

$$
\mathbf{A}_k = \mathop{\arg\min}\limits_{\mathsf{rank}(\mathbf{B}) = k} \left\| \mathbf{A} - \mathbf{B} \right\|_F^2
$$

 \triangleright surprisingly: not a convex optimization problem!

D convex combination of k-rank matrices is generally not rank k

$$
\frac{1}{2}\underbrace{\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}}_{\text{rank } 1} + \frac{1}{2}\underbrace{\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}}_{\text{rank } 1} = \frac{1}{2}\underbrace{\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}}_{\text{rank } 2}
$$

10 → 1日 → 1월 → 1월 → 1월 → 990 + 19/1

Beyond Singular Value Decomposition

 \triangleright Problem: entries which are **unobserved** – not zero!

 \blacktriangleright should optimize

$$
\min_{\text{rank}(\mathbf{B})=k}\left[\sum_{(i,j)\in\mathcal{I}}(a_{ij}-b_{ij})^2\right],\quad \mathcal{I}=\{(i,j):\text{observed}\}
$$

 \blacktriangleright instead of

$$
\min_{\text{rank}(\mathbf{B})=k}\left[\sum_{i,j}(a_{ij}-b_{ij})^2\right]=\min_{\text{rank}(\mathbf{B})=k}\|\mathbf{A}-\mathbf{B}\|_F^2
$$

I usually: mean zero $a_{ij} \leftarrow a_{ij} - \frac{1}{|\mathcal{I}|} \sum_{\mathcal{I}} a_{ij}$

4 ロ ▶ 4 @ ▶ 4 블 ▶ 4 블 ▶ - 블 - 9 Q Q - 20/1

Hardness of Matrix Reconstruction

▶ Define weighted Frobenius norm with regard to matrix $G > 0$.

$$
\|\mathbf{X}\|_{\mathbf{G}}:=\sqrt{\sum_{i,j}g_{ij}x_{ij}^2}
$$

▶ special case: $g_{ij} \in \{0,1\}$ (Boolean, partially observed matrix)

 \blacktriangleright Low-rank approximations are (in general) intrinsically hard

$$
\mathbf{B}^* \overset{\min}{\longrightarrow} \ell(\mathbf{B}) = \|\mathbf{A} - \mathbf{B}\|_{\mathbf{G}}^2, \quad \text{s.t.} \ \operatorname{rank}(\mathbf{B}) \leq k
$$

21/1

is NP-hard (Gillis & Glineur, 2011) even for $k = 1$.

 \blacktriangleright ... also holds for approximations with prescribed accuracy \blacktriangleright ... also holds for binary G

Matrix Factorization: Non-Convex Problem

- ▶ Singular Value Decomposition is not enough!
- \triangleright **Non-convex** optimization problem
	- \triangleright variant \triangleright non-convex domain

minimize convex objective over domain $\mathcal{Q}_k := \{ \mathbf{B} : \text{rank}(\mathbf{B}) = k \}$

 \triangleright variant \mathbf{B} : non-convex objective

re-parametrize $\mathbf{B} = \mathbf{U}\mathbf{V}, \quad \mathbf{U} \in \mathbb{R}^{m \times k}, \mathbf{V} \in \mathbb{R}^{k \times n}$

then rank(\mathbf{B}) $\leq k$ by definition

e.g.
$$
f(u, v) = (a - uv)^2
$$
, $a \neq 0 \land u_1v_1 = u_2v_2 = a \land u_1 \neq u_2$
\n $\implies f(u_1, v_1) = f(u_2, v_2) = 0 \land f\left(\frac{u_1 + u_2}{2}, \frac{v_1 + v_2}{2}\right) > 0$

4 ロ ▶ 4 레 ▶ 4 로 ▶ 4 로 ▶ 그로 → 9 Q Q → 22/1

Alternating Minimization

If Its there something convex about the non-convex objective?

$$
f(\mathbf{U}, \mathbf{V}) = \frac{1}{|\mathcal{I}|} \sum_{(i,j) \in \mathcal{I}} (a_{ij} - \langle \mathbf{u}_i, \mathbf{v}_j \rangle)^2
$$

 \triangleright for fixed U, f is convex in V – for fixed V, f is convex in U

 \blacktriangleright ... which does not mean f is jointly convex in U and V

 \blacktriangleright Idea: perform alternating minimization

 $\mathbf{U} \leftarrow \arg \min f(\mathbf{U}, \mathbf{V})$ U $\mathbf{V} \leftarrow \arg \min$ V $f({\bf U,V}), \quad$ repeat until convergence

 \blacktriangleright f is never increased and lower bounded by 0

Alternating Least Squares

 \blacktriangleright Alternating minimization for low-rank matrix factorization $=$ alternating least squares

 \blacktriangleright decompose f into subproblems for columns of V

$$
f(\mathbf{U}, \mathbf{V}) = \sum_{i} \underbrace{\left[\sum_{j:(i,j)\in\mathcal{I}} (a_{ij} - \langle \mathbf{u}_j, \mathbf{v}_i \rangle)^2 \right]}_{=:f(\mathbf{U}, \mathbf{v}_i)}
$$

4 ロ ▶ 4 레 ▶ 4 로 ▶ 4 로 ▶ 그로 → 9 Q Q + 24/1

least squares problem $f(\mathbf{U}, \mathbf{v}_i)$ for column \mathbf{v}_i of V

 \blacktriangleright each of which can be solved independently!

ighthrow by symmetry: also holds for $U \leftrightarrow V$

Frobenius Norm Regularization

 \blacktriangleright Typically: regularize matrix factors \mathbf{U}, \mathbf{V}

 \triangleright (squared) Frobenius norm regularizer

$$
\Omega(\mathbf{U}, \mathbf{V}) = \|\mathbf{U}\|_F^2 + \|\mathbf{V}\|_F^2
$$

$$
\blacktriangleright
$$
 then

$$
\text{minimize} \rightarrow f(\mathbf{U}, \mathbf{V}) + \mu \Omega(\mathbf{U}, \mathbf{V}), \quad \mu > 0
$$

\triangleright does not change separability structure of problem

- \triangleright given low-dimensional representations for items
- \triangleright compute for each user independently the best representation

- \triangleright given low-dimensional representations for users
- \triangleright compute for each item independently the best representation

all optimization problems are least-square problems of small dimension

4 ロ ▶ 4 레 ▶ 4 로 ▶ 4 로 ▶ 그로 → 9 Q Q → 26/1

Section 5

[Convex Relaxation](#page-26-0)

4 미 > 4 레 > 4 로 > 4 로 > 1 로 - 9 9 Q 0 - 27/1

Nuclear Norm

Nuclear norm

$$
\|\mathbf{A}\|_{*} = \sum_{i} \sigma_{i}, \quad \sigma_{i} : \text{singular values of } \mathbf{A}
$$

 \blacktriangleright Compare with Frobenius norm $\|\mathbf{A}\|_F = \sqrt{\sum_i \sigma_i^2}$

 \triangleright Or, alternatively, if we define $\sigma(\mathbf{A}) = (\sigma_1, \ldots, \sigma_n)$, then

 $\|\mathbf{A}\|_F = \|\boldsymbol{\sigma}(\mathbf{A})\|_2$ whereas $\|\mathbf{A}\|_* = \|\boldsymbol{\sigma}(\mathbf{A})\|_1$

28/1

► For a diagonal matrix D, $||D||_* = Tr(D)$.

Nuclear Norm Minimization

Exact reconstruction (Boolean G)

$$
\min_{\mathbf{B}} \|\mathbf{B}\|_{*} \quad \text{subject to} \quad \|\mathbf{A} - \mathbf{B}\|_{\mathbf{G}} = 0
$$

 \blacktriangleright Approximate reconstruction

$$
\min_{\mathbf{B}} \|\mathbf{A} - \mathbf{B}\|_{\mathbf{G}}^2, \quad \text{s.t. } \|\mathbf{B}\|_* \leq r
$$

 \blacktriangleright Lagrangian formulation

$$
\min_{\mathbf{B}} \left[\frac{1}{2\tau} \|\mathbf{A} - \mathbf{B}\|_{\mathbf{G}}^2 + \|\mathbf{B}\|_* \right]
$$

4 ロ ▶ 4 @ ▶ 4 블 ▶ 4 블 ▶ - 블 - 90 Q - 29/1

Nuclear Norm vs. Rank

 \blacktriangleright How does this relate to low rank approximation?

 \blacktriangleright Lower bound

$$
\mathsf{rank}(\mathbf{B}) \geq \|\mathbf{B}\|_*, \quad \text{for} \quad \|\mathbf{B}\|_2 \leq 1
$$

in fact: tightest convex lower bound (Fazel 2002)

 \blacktriangleright Convex relaxation

$$
\min_{\mathbf{B}\in\mathcal{P}_k} \|\mathbf{A} - \mathbf{B}\|_{\mathbf{G}}^2, \quad \mathcal{P}_k := \{\mathbf{B} : \|\mathbf{B}\|_* \le k\}
$$

where

$$
\mathcal{P}_k \supseteq \mathcal{Q}_k = \{ \mathbf{B} : \mathsf{rank}(\mathbf{B}) \leq k \}
$$

4 ロ ▶ 4 레 ▶ 4 로 ▶ 4 로 ▶ 그로 → 9 의 이 30/1

SVD Thresholding

 \blacktriangleright How to solve optimization problems involving the nuclear norm?

 \blacktriangleright Fundamental result (due to Cai, Candès & Shen, 2008)

$$
\mathbf{B}^* = \textsf{shrink}_{\tau}(\mathbf{A}) := \underset{\mathbf{B}}{\text{arg min}} \left\{ \frac{1}{2} \|\mathbf{A} - \mathbf{B}\|_F^2 + \tau \|\mathbf{B}\|_* \right\}
$$

then with SVD $\mathbf{A} = \mathbf{U} \mathbf{D} \mathbf{V}^\top$, $\mathbf{D} = \text{diag}(\sigma_i)$, it holds that

$$
\mathbf{B}^* = \mathbf{U} \mathbf{D}_{\tau} \mathbf{V}^\top, \quad \mathbf{D}_{\tau} = \text{diag}(\max\{0, \sigma_i - \tau\})
$$

31/1

ighthroate: all singular values are reduced by at least τ

SVD Shrinkage Iterations

- \triangleright SVD thresholding $+$ projection $=$ Shrinkage iterations (due to Cai, Candès & Shen, 2008)
- \triangleright Define projection operator with regard to index set $\mathcal I$

$$
\Pi(\mathbf{X}) = \begin{cases} x_{ij} & (i,j) \in \mathcal{I} \\ 0 & \text{otherwise} \end{cases}
$$

Iterative algorithm, initialized with $B_0 = 0$

$$
\mathbf{B}_{t+1} = \mathbf{B}_t + \eta_t \, \Pi(\mathbf{A} - \mathsf{shrink}_\tau(\mathbf{B}_t))
$$

$$
\blacktriangleright \eta_t > 0
$$
: learning rate sequence

SVD Shrinkage Iterations: Analysis

- \blacktriangleright \mathbf{B}_t is a sequence of sparse matrices (efficiency!)
- It can be shown that $\lim_{t\to\infty}$ shrink $\tau(\mathbf{B}_t) = \mathbf{B}^*$, the minimizer of

$$
\mathbf{B}^* = \underset{\mathbf{B}}{\arg\min} \left\{ \|\mathbf{B}\|_{*} + \frac{1}{2\tau} \|\mathbf{B}\|_{F}^2 \right\}, \quad \text{s.t. } \Pi(\mathbf{A} - \mathbf{B}) = \mathbf{0}
$$

- **For small enough** τ **one finds a minimal nuclear-norm** approximation to A that agrees on all observed entires.
- \triangleright Can be extented to $\|\mathbf{A} \mathbf{B}\|_G$ residuals (by modifying Π)

 1 Upon appropriate choice of step sizes.

Exact Matrix Recovery

- \triangleright Can use SVD-shrinkage iterations to solve convex relaxations.
- But: can we get any "generalization" guarantees $(\Pi(\mathbf{A}^*) = \mathbf{A})$?

$$
\mathbf{B}^* = \underset{\mathbf{B}}{\arg\min} \left\{ \|\mathbf{B}\|_* \right\}, \quad \text{s.t.} \ \Pi(\mathbf{A} - \mathbf{B}) = \mathbf{0}
$$

- \triangleright suprising (deep) result: yes!
- **IF Theorem:** Exact reconstruction of rank k matrix A^* w.h.p., if it is strongly incoherent (parameter μ , spread of singular values), if

$$
|\mathcal{I}|\geq C\mu^4k^2n(\log n)^2\in\tilde{\mathbf{O}}(n),\quad\text{typically}\quad \mu=\mathbf{O}(\sqrt{\log n})
$$

- ▶ due to Candes & Tao, 2010
- ▶ explains, why $\|\cdot\|_*$ minimization works well in practice!