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Section 1

Motivation



Introduction: Topic Models

» Challenge

> given: corpus of text documents (e.g. web pages)

» goal: find low-dimensional document representation in semantic
space of topics or concepts — aboutness of documents

» also known as topic models

» Approach: predictive model
» log-liklihood of predicting words in document
» MLE: probabilistic Latent Semantic Analysis (pLSA)
» Bayesian: Latent Dirichlet Allocation (LDA)

> related to non-negative matrix decomposition



Document Representation: Pre-Processing

» Vocabulary
> all“meaningful” words (=terms) in a language
» extracted from corpus documents via tokenization

> large cardinality (e.g. ~1-100 million)

» Term filtering

» exclude stop words (“the”, “is”, “at”, "which", etc.).

» exclude infrequent words, misspellings, tokenizer errors, etc.

» Term normalization

» stemming (optionally): reduce word to stem/lemma
» example: “argue”, “argued”, “argues”, “arguing”, and “argus”
reduce to the stem “arg"”



Document Representation: Bag-of-Words

» Bag-of-word Representation

> ignore order of words in sentences/document
» reduce data to co-occurrence counts
> see previous lecture: word context = entire document

» document = M-dimensional vector of counts, very sparse!
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Probabilistic LSA



Probabilistic LSA: Topic Model

» Topic parameters = word distribution

» Document = mixture of topics
» = probabilistic assignment

» example: document on soccer world cup 2022 in Dubai
> soccer vocabulary (e.g. “teams”, “play”, “soccer”’, “match”)
> political vocabulary (e.g. “labor”, “corruption”, “president”)

> mixing weights # uncertainty about correct topic

» Goal: Discover topics in an unsupervised fashion.



Probabilistic LSA: Two-Stage Sampling

» Two-stage (hierarchical) sampling:
» (1) sample topic for each token gg%%

» (2) sample token, given sampled topic

» Model parameters

» each document = specific mix of topics (colors): p(z|d)

» each topic (color) = specific distribution of words: p(w|z)
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Probabilistic LSA: Basic Model

» Context model:
occurrence of word w in context/document d

p(w|d) = Zp wlz)p(z|d)

> identify topics with integers z € {1,..., K} (K: pre-specified)
> relative to a fixed “slot” (i.e. fixed position in document)

» identical distribution for every slot

» Conditional independence assumption (*)

p(w|d) = Zp (w, z|d) = Zp wld, 2)p(z|d) = Zp wl|z)p

> topics represent regularities common to the entire collection



Probabilistic LSA: Log-Likelihood

» Summarize data into co-occurrence counts X = z;;
(# occurrences of w; in document d;)

» Alternatively: multiset X’ over index pairs (i, 7)
» Log-likelihood

(U, V) = inj log p(wj|d;) = Z log Zp w]\

1,3 (i,j)ex =1

> two types of parameters:
> wu; > 0such that Y wu,; =1 (Vi)
> v,; > 0 such that 37, v.; =1 (Vz2)
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Expectation Maximization for pLSA

» Missing data Q.;; € {0,1}: wj in d; generated via 2z, Y, Q.;; =1
» Variational parameters ¢.;; = Pr(Q.i; = 1), >, ¢zij =1

» Lower bound from Jensen's inequality
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» Solve for optimal ¢ (Expectation Step)
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Expectation Maximization for pLSA (cont’d)

» Solve for optimal parameters (Maximization Step)

2 TijQij _ i%ity

Uzq = ) Vzj ,
Zj Lij Zz‘,l L3192l

» numerator: simple weighted counts

» denominator: ensure proper normalization

» EM for MLE in pLSA ;-)
» guaranteed convergence (cf. mixture models)

» not guaranteed to find global optimum



Topics Discovered by pLSA
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Table: Eight selected topics from a 128 topic decomposition. The
displayed word stems are the 10 most probable words in the
class-conditional distribution p(word|topic), from top to bottom in
descending order.

Hofmann, Thomas. Probabilistic latent semantic indexing. ACM SIGIR
Forum. Vol. 51. No. 2. ACM, 2017. (re-print from 1999)
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Latent Dirichlet Allocation



Generative Document Model

» Probabilistic LSA: both dimensions of matrix are fixed
» Generative document model: how to sample new document?

» Co-occurrence matrix: how to sample additional row of X7

d, |
d, -
o DATA
dy
dﬂeW
X = UT Vv
» Need to be able to sample topic weights u; = (u1,...,ux;) ' for

a new document

» Combine with existing V to predict new data row



Latent Dirichlet Allocation (LDA)

> u; is a probability vector, "simplest” (conjugate) distribution =
Dirichlet distribution

K
plugla) oc [ uss™
z=1

> given « parameters (K dim.), can generate topic weights

» but, we can do more ...

» Bayesian view: treat U as nuisance parameters
» U needs to be averaged out
» 'V are real parameters, U can be re-constructed, if needed

» advantages in terms of model averaging



Latent Dirichlet Allocation: Bayesian View

> LDA model (fixed document length [ =} ;)

» multinomial observation model (x = word count vector)

! v
p(X|V,u) = ijl Hﬂ-;‘;]a T = szjuz
J z

J

» Bayesian averaging over u

p(x[V,a) = / p x|V, u) p(ula) du

» Generative model

» for each d;: sample u; ~ Dirichlet(a) = integrate out
» for each word slots w?, 1 < ¢t < l; = iid. = product
» sample topic 2! ~ Multi(u;) = latent, sum out

> then sample w’ ~ Multi(v,:) = observable



Latent Dirichlet Allocation: Algorithms

> Learning algorithms

> variational expectation maximization
Markov Chain Monte Carlo (MCMC): collapsed Gibbs sampling
distributed, large-scale implementations (100Ms of documents)

v

v

v

(beyond the scope of this lecture...)

Blei, David M., Andrew Y. Ng, and Michael |. Jordan. “Latent dirichlet
allocation.” Journal of Machine Learning Research, 2003, pp. 993-1022.



Latent Dirichlet Allocation: Examples

Figure 1. The Intultions behind latent Dirichlet allocation. We assume that some number of “topics,” which are distributions over words,
B s e s

histogram at right); then, for each word, choose a topic assignment (the colored coins) and choose the word fror
‘The topics and topic assignments in this figure are illustrative—they are not it from real data. See Figure 2 for lwlu it from data.
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Non-Negative Matrix Factorization



Non-Negative Matrix Factorization

» Count matrix X € Z]>V0XM

» Non-negative matrix factorization (NMF) of X:

X = UTV, Tij = Z UzVzj = <ui7 Vj>
z
» constraints on matrix factors U and V
> non-negativity — as all parameters are probabilities
> normalization — U,V are L; column-normalized
> approximation quality measured via log-likelihood
» dimension reduction: N-M > (N+ M)K — N — M



NMF for Quadratic Cost Function

» pLSA: just one instance of a non-negative matrix factorization

» Variation: non-negative data X with quadratic cost function
= non-negative matrix approximation

1
i U, V)=_|X-U"V|3.
min J(U, V) = 17
st. Uz, >0 (Vi,j,2) (non-negativity)

» Similar as pLSA, but ...

» different sampling model: Gaussian vs. multinomial
» different objective: quadratic instead of KL divergence

» different constraints (not normalized)



Part-Based Representation of Faces

» NMF is useful when modelling v
non-negative data (e.g. images = T

non-negative intensities) SETRED B
R e -

» Additive superpositions without
cancellations = NMF leads to
part-based representations

> vs. vector quantization, K-means: i
combination of multiple basis images

D.D. Lee & H. S. Seung, Learning the parts of objects by non-negative matrix factorization, Nature, 40, 1999.



Part-Based Representation of Faces (zoom-in)
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NMF Algorithm: Quadratic Costs

» Alternating least squares

» convex in U given V and vice versa, but not jointly in (U, V)
» = alternate optimization of U and V, keeping the other fixed

» normal equations in matrix notation

(UUN) V=UX, and (VV)U=VX"

v

solved via QQ R-decomposition or gradient descent

v

project in between alternations — non-negativity!
Uy = max{0,uy}, v, =max{0,v,;}

» More detailed discussion of algorithms for NMF see:

Berry, M.W. et al.: Algorithms and applications for approximate
nonnegative matrix factorization. Computational Statistics & Data
Analysis, 52(1), 2007, pp.155-173.



pLSA & NMF: Discussion

v

Matrix factorization obeying non-negativity and (optionally, pLSA)
normalization constraints

v

Different cost functions: multinomial likelihood, quadratic loss

v

lterative optimization (EM algorithm, projected ALS)

v

Interpretability of factors: topics, parts, etc.

v

Wide range of applications
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