Computational Intelligence Laboratory Lecture 4 Non-Negative Matrix Factorization

Thomas Hofmann

ETH Zurich – <cil.inf.ethz.ch>

13 March 2020

K ロ ▶ K d @ ▶ K 할 ▶ K 할 ▶ → 할 ▶ → 할 → 이익(* 1/26)

Section 1

[Motivation](#page-1-0)

4 미 > 4 레 > 4 레 > 4 레 > 1 레 > 2 - 9 여 0 ~ 2/26

Introduction: Topic Models

- \blacktriangleright Challenge
	- \triangleright given: corpus of text documents (e.g. web pages)
	- \triangleright goal: find low-dimensional document representation in semantic space of topics or concepts $-$ aboutness of documents
	- \blacktriangleright also known as **topic models**
- \blacktriangleright Approach: predictive model
	- \triangleright log-liklihood of predicting words in document
	- \triangleright MLE: probabilistic Latent Semantic Analysis (pLSA)
	- ▶ Bayesian: Latent Dirichlet Allocation (LDA)
	- \blacktriangleright related to non-negative matrix decomposition

Document Representation: Pre-Processing

- \blacktriangleright Vocabulary
	- \blacktriangleright all "meaningful" words (=terms) in a language
	- \triangleright extracted from corpus documents via tokenization
	- \blacktriangleright large cardinality (e.g. \sim 1-100 million)
- \blacktriangleright Term filtering
	- \triangleright exclude stop words ("the", "is", "at", "which", etc.).
	- \triangleright exclude infrequent words, misspellings, tokenizer errors, etc.
- \blacktriangleright Term normalization
	- **Example 3** stemming (optionally): reduce word to stem/lemma
	- \triangleright example: "argue", "argued", "argues", "arguing", and "argus" reduce to the stem "arg"

Document Representation: Bag-of-Words

- \blacktriangleright Bag-of-word Representation
	- \triangleright ignore order of words in sentences/document
	- **E** reduce data to co-occurrence counts
	- \triangleright see previous lecture: word context = entire document
	- \triangleright document = M-dimensional vector of counts, very **sparse!**

Section 2

[Probabilistic LSA](#page-5-0)

4 ロ → (日) + 4 E → (日) = 로 → 9 Q (0 6/26

Probabilistic LSA: Topic Model

- \blacktriangleright Topic parameters $=$ word distribution
- Document $=$ mixture of topics
	- $\blacktriangleright \neq$ probabilistic assignment
	- \triangleright example: document on soccer world cup 2022 in Dubai
		- ▶ soccer vocabulary (e.g. "teams", "play", "soccer", "match")
		- political vocabulary (e.g. "labor", "corruption", "president")

4 ロ ▶ 4 @ ▶ 4 로 ▶ 4 로 ▶ - 로 - 9 9 0 년 7/26

- \triangleright mixing weights \neq uncertainty about correct topic
- \triangleright Goal: Discover topics in an unsupervised fashion.

Probabilistic LSA: Two-Stage Sampling

- \blacktriangleright Two-stage (hierarchical) sampling:
	- \blacktriangleright (1) sample topic for each token
	- \triangleright (2) sample token, given sampled topic
- Model parameters
	- **Execute 2** each document = specific mix of topics (colors): $p(z|d)$
	- **Example 2** each topic (color) = specific distribution of words: $p(w|z)$

4 ロ ▶ 4 @ ▶ 4 할 ▶ 4 할 ▶ → 할 → 9 9 0 º 8/26

Probabilistic LSA: Basic Model

\blacktriangleright Context model:

occurrence of word w in context/document d

$$
p(w|d) = \sum_{z=1}^{K} p(w|z)p(z|d)
$$

- \triangleright identify topics with integers $z \in \{1, ..., K\}$ (K: pre-specified)
- \triangleright relative to a fixed "slot" (i.e. fixed position in document)
- \triangleright identical distribution for every slot
- ► Conditional independence assumption (*)

$$
p(w|d) = \sum_{z} p(w, z|d) = \sum_{z} p(w|d, z)p(z|d) \stackrel{*}{=} \sum_{z} p(w|z)p(z|d)
$$

 \triangleright topics represent regularities common to the entire collection

Probabilistic LSA: Log-Likelihood

- Summarize data into co-occurrence counts $X = x_{ij}$ (# occurrences of w_i in document d_i)
- Alternatively: multiset X over index pairs (i, j)

 \blacktriangleright Log-likelihood

$$
\ell(\mathbf{U}, \mathbf{V}) = \sum_{i,j} x_{ij} \log p(w_j|d_i) = \sum_{(i,j) \in \mathcal{X}} \log \sum_{z=1}^K \underbrace{p(w_j|z)}_{=:v_{zj}} \underbrace{p(z|d_i)}_{=:u_{zi}}
$$

10 → 1日→ 1월→ 1월→ 1월 1990 10/26

- \blacktriangleright two types of parameters:
- $\blacktriangleright \; u_{zi} \geq 0$ such that $\sum_z u_{zi} = 1 \; (\forall i)$
- \blacktriangleright $v_{zj} \geq 0$ such that $\sum_j v_{zj} = 1$ $(\forall z)$

Expectation Maximization for pLSA

- ► Missing data $Q_{zij} \in \{0,1\}$: w_j in d_i generated via z , $\sum_z Q_{zij} = 1$
- \blacktriangleright <code>Variational</code> parameters $q_{zij} = \mathsf{Pr}(Q_{zij} = 1)$, $\sum_z q_{zij} = 1$
- \blacktriangleright Lower bound from Jensen's inequality

$$
\log \sum_{z=1}^{K} q_{zij} \frac{u_{zi} v_{zj}}{q_{zij}} \ge \sum_{z=1}^{K} q_{zij} \left[\log u_{zi} + \log v_{zj} - \log q_{zij} \right]
$$

 \triangleright Solve for optimal q (Expectation Step)

$$
q_{zij} = \frac{u_{zi}v_{zj}}{\sum_{k=1}^{K} u_{ki}v_{kj}} = \frac{p(w_j|z)p(z|d_i)}{\sum_{k=1}^{K} p(w_j|k)p(k|d_i)}
$$

11/26
11/26

$$
\blacktriangleright \implies \text{posterior of } Q_{zij} \text{ under model}
$$

Expectation Maximization for pLSA (cont'd)

 \triangleright Solve for optimal parameters (Maximization Step)

$$
u_{zi} = \frac{\sum_j x_{ij} q_{zij}}{\sum_j x_{ij}}, \qquad v_{zj} = \frac{\sum_i x_{ij} q_{zij}}{\sum_{i,l} x_{il} q_{zil}},
$$

4 ロ ▶ 4 @ ▶ 4 할 ▶ 4 할 ▶ → 할 → 9 익 안 + 12/26

- \blacktriangleright numerator: simple weighted counts
- \blacktriangleright denominator: ensure proper normalization
- \blacktriangleright EM for MLE in pLSA ;-)
	- \blacktriangleright guaranteed convergence (cf. mixture models)
	- \triangleright not guaranteed to find global optimum

Topics Discovered by pLSA

Table: Eight selected topics from a 128 topic decomposition. The displayed word stems are the 10 most probable words in the class-conditional distribution $p(\text{word}|\text{topic})$, from top to bottom in descending order.

Hofmann, Thomas. Probabilistic latent semantic indexing. ACM SIGIR Forum. Vol. 51. No. 2. ACM, 2017. (re-print from 1999)

Section 3

[Latent Dirichlet Allocation](#page-13-0)

14/26

Generative Document Model

- \triangleright Probabilistic LSA: both dimensions of matrix are fixed
- \triangleright Generative document model: how to sample new document?
- \triangleright Co-occurrence matrix: how to sample additional row of X?

- \blacktriangleright Need to be able to sample topic weights $\mathbf{u}_i = (u_{1i}, \ldots, u_{Ki})^\top$ for a new document
- \triangleright Combine with existing V to predict new data row

Latent Dirichlet Allocation (LDA)

 \blacktriangleright \mathbf{u}_i is a probability vector, "simplest" (conjugate) distribution $=$ Dirichlet distribution

$$
p(\mathbf{u}_i|\alpha) \propto \prod_{z=1}^K u_{zi}^{\alpha_z - 1}
$$

- **P** given α parameters (K dim.), can generate topic weights
- \blacktriangleright but, we can do more ...
- Bayesian view: treat U as nuisance parameters
	- \triangleright U needs to be averaged out
	- \triangleright V are real parameters, U can be re-constructed, if needed
	- \blacktriangleright advantages in terms of model averaging

Latent Dirichlet Allocation: Bayesian View

- \blacktriangleright LDA model (fixed document length $l=\sum_j x_j)$
	- \triangleright multinomial observation model ($x =$ word count vector)

$$
p(\mathbf{x}|\mathbf{V}, \mathbf{u}) = \frac{l!}{\prod_j x_j!} \prod_j \pi_j^{x_j}, \quad \pi_j := \sum_z v_{zj} u_z
$$

 \blacktriangleright Bayesian averaging over u

$$
p(\mathbf{x}|\mathbf{V}, \alpha) = \int p(\mathbf{x}|\mathbf{V}, \mathbf{u}) p(\mathbf{u}|\alpha) d\mathbf{u}
$$

\blacktriangleright Generative model

- ► for each d_i : sample $\mathbf{u}_i \sim \mathsf{Dirichlet}(\alpha) \Longrightarrow$ integrate out
- ► for each word slots w^t , $1 \le t \le l_i \Longrightarrow$ iid. = product
	- ► sample topic $z^t \sim \mathsf{Multi}(\mathbf{u}_i) \Longrightarrow$ latent, sum out
	- ► then sample $w^t \sim \mathsf{Multi}(\mathbf{v}_{z^t}) \Longrightarrow$ observable

Latent Dirichlet Allocation: Algorithms

\blacktriangleright Learning algorithms

- \triangleright variational expectation maximization
- \triangleright Markov Chain Monte Carlo (MCMC): collapsed Gibbs sampling
- \triangleright distributed, large-scale implementations (100Ms of documents)
- \blacktriangleright (beyond the scope of this lecture...)

Blei, David M., Andrew Y. Ng, and Michael I. Jordan. "Latent dirichlet allocation." Journal of Machine Learning Research, 2003, pp. 993-1022.

4 ロ ▶ 4 @ ▶ 4 할 ▶ 4 할 ▶ → 할 → 9 익 Q + 18/26

Latent Dirichlet Allocation: Examples

.
Figure 1. The intuitions behind latent Dirichlet allocation. We assume that some number of "topics." which are distributions over words. exist for the whole collection (far left). Each document is assumed to be generated as follows. First choose a distribution over the topics (the histogram at right); then, for each word, choose a topic assignment (the colored coins) and choose the word from the corresponding topic. The topics and topic assignments in this figure are illustrative—they are not fit from real data. See Figure 2 for topics fit from data.

Example from Blei, 2012

.
Figure 2. Real inference with LDA. We fit a 100-topic LDA model to 17,000 articles from the journal *Science*. At left are the inferred onic proportions for the example article in Figure 1. At right are the top 15 most frequent words from the most frequent topics found in this article

 $\mathbf{A} \equiv \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B}$ ÷ 298 19/26

Section 4

[Non-Negative Matrix Factorization](#page-19-0)

-
20/26 20/26 2002 → 4월 3002 20/26

Non-Negative Matrix Factorization

► Count matrix
$$
\mathbf{X} \in \mathbb{Z}_{\geq 0}^{N \times M}
$$

 \triangleright Non-negative matrix factorization (NMF) of **X**:

$$
\mathbf{X} \approx \mathbf{U}^\top \mathbf{V}, \quad x_{ij} = \sum_z u_{zi} v_{zj} = \langle \mathbf{u}_i, \mathbf{v}_j \rangle
$$

21/26

- \triangleright constraints on matrix factors U and V
	- non-negativity as all parameters are probabilities
	- normalization \mathbf{U}, \mathbf{V} are L_1 column-normalized
- \triangleright approximation quality measured via log-likelihood
- \triangleright dimension reduction: $N \cdot M \gg (N + M)K N M$

NMF for Quadratic Cost Function

- \triangleright pLSA: just one instance of a non-negative matrix factorization
- \triangleright Variation: non-negative data X with quadratic cost function $=$ non-negative matrix approximation

$$
\begin{aligned}\n\min_{\mathbf{U},\mathbf{V}} \quad & J(\mathbf{U},\mathbf{V}) = \frac{1}{2} \|\mathbf{X} - \mathbf{U}^\top \mathbf{V}\|_F^2. \\
\text{s.t.} \quad & u_{zi}, v_{zj} \ge 0 \quad (\forall i, j, z) \quad \text{(non-negativity)}\n\end{aligned}
$$

- \triangleright Similar as pLSA, but ...
	- \triangleright different sampling model: Gaussian vs. multinomial
	- \blacktriangleright different objective: quadratic instead of KL divergence
	- \blacktriangleright different constraints (not normalized)

Part-Based Representation of Faces

- \triangleright NMF is useful when modelling non-negative data (e.g. images $=$ non-negative intensities)
- \blacktriangleright Additive superpositions without c ancellations \implies NMF leads to part-based representations
- \triangleright vs. vector quantization, K -means: combination of multiple basis images

D.D. Lee & H. S. Seung, Learning the parts of objects by non-negative matrix factorization, Nature, 40, 1999.

Part-Based Representation of Faces (zoom-in)

Original

 $=$

4 ロ → 4 @ ▶ 4 블 → 4 블 → 1 를 → 9 9 0 - 24/26

NMF Algorithm: Quadratic Costs

- \blacktriangleright Alternating least squares
	- \triangleright convex in U given V and vice versa, but not jointly in (U, V)
	- $\triangleright \Rightarrow$ alternate optimization of U and V, keeping the other fixed
	- \triangleright normal equations in matrix notation

 $(\mathbf{U}\mathbf{U}^{\top})\,\mathbf{V} = \mathbf{U}\mathbf{X}, \quad \textsf{and} \quad (\mathbf{V}\mathbf{V}^{\top})\,\mathbf{U} = \mathbf{V}\mathbf{X}^{\top}$

- \triangleright solved via QR-decomposition or gradient descent
- \triangleright project in between alternations non-negativity!

$$
u_{zi} = \max\{0, u_{zi}\}, \quad v_{zj} = \max\{0, v_{zj}\}
$$

 \triangleright More detailed discussion of algorithms for NMF see:

Berry, M.W. et al.: Algorithms and applications for approximate nonnegative matrix factorization. Computational Statistics & Data Analysis, 52(1), 2007, pp.155-173.

pLSA & NMF: Discussion

 \triangleright Matrix factorization obeying non-negativity and (optionally, pLSA) normalization constraints

4 ロ → 4 레 → 4 페 → 4 페 → 세로 → 10 호 → 20 → 26/26

- \triangleright Different cost functions: multinomial likelihood, quadratic loss
- Iterative optimization (EM algorithm, projected ALS)
- Interpretability of factors: topics, parts, etc.
- \triangleright Wide range of applications