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Section 1

Motivation
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Introduction: Topic Models

I Challenge

I given: corpus of text documents (e.g. web pages)

I goal: find low-dimensional document representation in semantic
space of topics or concepts – aboutness of documents

I also known as topic models

I Approach: predictive model

I log-liklihood of predicting words in document

I MLE: probabilistic Latent Semantic Analysis (pLSA)

I Bayesian: Latent Dirichlet Allocation (LDA)

I related to non-negative matrix decomposition
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Document Representation: Pre-Processing

I Vocabulary

I all“meaningful” words (=terms) in a language

I extracted from corpus documents via tokenization

I large cardinality (e.g. ∼1-100 million)

I Term filtering

I exclude stop words (“the”, “is”, “at”, “which”, etc.).

I exclude infrequent words, misspellings, tokenizer errors, etc.

I Term normalization

I stemming (optionally): reduce word to stem/lemma

I example: “argue”, “argued”, “argues”, “arguing”, and “argus”
reduce to the stem “arg”
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Document Representation: Bag-of-Words

I Bag-of-word Representation

I ignore order of words in sentences/document

I reduce data to co-occurrence counts

I see previous lecture: word context = entire document

I document = M -dimensional vector of counts, very sparse!
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Section 2

Probabilistic LSA
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Probabilistic LSA: Topic Model

I Topic parameters = word distribution

I Document = mixture of topics
I 6= probabilistic assignment

I example: document on soccer world cup 2022 in Dubai
I soccer vocabulary (e.g. “teams”,“play”, “soccer”, “match”)

I political vocabulary (e.g. “labor”, “corruption”, “president”)

I mixing weights 6= uncertainty about correct topic

I Goal: Discover topics in an unsupervised fashion.
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Probabilistic LSA: Two-Stage Sampling

I Two-stage (hierarchical) sampling:

I (1) sample topic for each token

I (2) sample token, given sampled topic

I Model parameters

I each document = specific mix of topics (colors): p(z|d)
I each topic (color) = specific distribution of words: p(w|z)
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Probabilistic LSA: Basic Model

I Context model:
occurrence of word w in context/document d

p(w|d) =
K∑
z=1

p(w|z)p(z|d)

I identify topics with integers z ∈ {1, . . . ,K} (K: pre-specified)

I relative to a fixed “slot” (i.e. fixed position in document)

I identical distribution for every slot

I Conditional independence assumption (∗)

p(w|d) =
∑
z

p(w, z|d) =
∑
z

p(w|d, z)p(z|d) ∗=
∑
z

p(w|z)p(z|d)

I topics represent regularities common to the entire collection
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Probabilistic LSA: Log-Likelihood

I Summarize data into co-occurrence counts X = xij
(# occurrences of wj in document di)

I Alternatively: multiset X over index pairs (i, j)

I Log-likelihood

`(U,V) =
∑
i,j

xij log p(wj |di) =
∑

(i,j)∈X

log

K∑
z=1

p(wj |z)︸ ︷︷ ︸
=:vzj

p(z|di)︸ ︷︷ ︸
=:uzi

I two types of parameters:

I uzi ≥ 0 such that
∑

z uzi = 1 (∀i)
I vzj ≥ 0 such that

∑
j vzj = 1 (∀z)
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Expectation Maximization for pLSA

I Missing data Qzij ∈ {0, 1}: wj in di generated via z,
∑

z Qzij = 1

I Variational parameters qzij = Pr(Qzij = 1),
∑

z qzij = 1

I Lower bound from Jensen’s inequality

log

K∑
z=1

qzij
uzivzj
qzij

≥
K∑
z=1

qzij [log uzi + log vzj − log qzij ]

I Solve for optimal q (Expectation Step)

qzij =
uzivzj∑K
k=1 ukivkj

=
p(wj |z)p(z|di)∑K
k=1 p(wj |k)p(k|di)

I =⇒ posterior of Qzij under model
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Expectation Maximization for pLSA (cont’d)

I Solve for optimal parameters (Maximization Step)

uzi =

∑
j xijqzij∑
j xij

, vzj =

∑
i xijqzij∑
i,l xilqzil

,

I numerator: simple weighted counts

I denominator: ensure proper normalization

I EM for MLE in pLSA ;-)

I guaranteed convergence (cf. mixture models)

I not guaranteed to find global optimum
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Topics Discovered by pLSA

“segment 1” “segment 2” “matrix 1” “matrix 2” “line 1” “line 2” “power 1” “power 2”
imag speaker robust manufactur constraint alpha POWER load

SEGMENT speech MATRIX cell LINE redshift spectrum memori
texture recogni eigenvalu part match LINE omega vlsi
color signal uncertainti MATRIX locat galaxi mpc POWER
tissue train plane cellular imag quasar hsup systolic
brain hmm linear famili geometr absorp larg input
slice source condition design impos high redshift complex

cluster speakerind. perturb machinepart segment ssup galaxi arrai
mri SEGMENT root format fundament densiti standard present

volume sound suffici group recogn veloc model implement

Table: Eight selected topics from a 128 topic decomposition. The
displayed word stems are the 10 most probable words in the
class-conditional distribution p(word|topic), from top to bottom in
descending order.

Hofmann, Thomas. Probabilistic latent semantic indexing. ACM SIGIR

Forum. Vol. 51. No. 2. ACM, 2017. (re-print from 1999)
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Section 3

Latent Dirichlet Allocation
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Generative Document Model

I Probabilistic LSA: both dimensions of matrix are fixed

I Generative document model: how to sample new document?

I Co-occurrence matrix: how to sample additional row of X?

I Need to be able to sample topic weights ui = (u1i, . . . , uKi)
> for

a new document

I Combine with existing V to predict new data row
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Latent Dirichlet Allocation (LDA)

I ui is a probability vector, ”simplest” (conjugate) distribution =
Dirichlet distribution

p(ui|α) ∝
K∏
z=1

uαz−1
zi

I given α parameters (K dim.), can generate topic weights

I but, we can do more ...

I Bayesian view: treat U as nuisance parameters

I U needs to be averaged out

I V are real parameters, U can be re-constructed, if needed

I advantages in terms of model averaging
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Latent Dirichlet Allocation: Bayesian View

I LDA model (fixed document length l =
∑

j xj)

I multinomial observation model (x = word count vector)

p (x|V,u) = l!∏
j xj !

∏
j

π
xj

j , πj :=
∑
z

vzjuz

I Bayesian averaging over u

p (x|V, α) =
∫
p (x|V,u) p(u|α) du

I Generative model

I for each di: sample ui ∼ Dirichlet(α) =⇒ integrate out
I for each word slots wt, 1 ≤ t ≤ li =⇒ iid. = product

I sample topic zt ∼ Multi(ui) =⇒ latent, sum out

I then sample wt ∼ Multi(vzt) =⇒ observable
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Latent Dirichlet Allocation: Algorithms

I Learning algorithms

I variational expectation maximization

I Markov Chain Monte Carlo (MCMC): collapsed Gibbs sampling

I distributed, large-scale implementations (100Ms of documents)

I (beyond the scope of this lecture...)

Blei, David M., Andrew Y. Ng, and Michael I. Jordan. “Latent dirichlet

allocation.” Journal of Machine Learning Research, 2003, pp. 993-1022.
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Latent Dirichlet Allocation: Examples

Example from
Blei, 2012



20/26

Section 4

Non-Negative Matrix Factorization
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Non-Negative Matrix Factorization

I Count matrix X ∈ ZN×M≥0

I Non-negative matrix factorization (NMF) of X:

X ≈ U>V, xij =
∑
z

uzivzj = 〈ui,vj〉

I constraints on matrix factors U and V

I non-negativity – as all parameters are probabilities

I normalization – U,V are L1 column-normalized

I approximation quality measured via log-likelihood

I dimension reduction: N ·M � (N +M)K −N −M
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NMF for Quadratic Cost Function

I pLSA: just one instance of a non-negative matrix factorization

I Variation: non-negative data X with quadratic cost function
= non-negative matrix approximation

min
U,V

J(U,V) =
1

2
‖X−U>V‖2F .

s.t. uzi, vzj ≥ 0 (∀i, j, z) (non-negativity)

I Similar as pLSA, but ...

I different sampling model: Gaussian vs. multinomial

I different objective: quadratic instead of KL divergence

I different constraints (not normalized)
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Part-Based Representation of Faces

I NMF is useful when modelling
non-negative data (e.g. images =
non-negative intensities)

I Additive superpositions without
cancellations =⇒ NMF leads to
part-based representations

I vs. vector quantization, K-means:
combination of multiple basis images

D.D. Lee & H. S. Seung, Learning the parts of objects by non-negative matrix factorization, Nature, 40, 1999.
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Part-Based Representation of Faces (zoom-in)
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NMF Algorithm: Quadratic Costs

I Alternating least squares

I convex in U given V and vice versa, but not jointly in (U,V)

I ⇒ alternate optimization of U and V, keeping the other fixed

I normal equations in matrix notation(
UU>)V = UX, and

(
VV>)U = VX>

I solved via QR-decomposition or gradient descent

I project in between alternations – non-negativity!

uzi = max{0, uzi}, vzj = max{0, vzj}

I More detailed discussion of algorithms for NMF see:

Berry, M.W. et al.: Algorithms and applications for approximate

nonnegative matrix factorization. Computational Statistics & Data

Analysis, 52(1), 2007, pp.155-173.
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pLSA & NMF: Discussion

I Matrix factorization obeying non-negativity and (optionally, pLSA)
normalization constraints

I Different cost functions: multinomial likelihood, quadratic loss

I Iterative optimization (EM algorithm, projected ALS)

I Interpretability of factors: topics, parts, etc.

I Wide range of applications
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