
Computational Intelligence Laboratory

Lecture 5

Embeddings

Thomas Hofmann

ETH Zurich – cil.inf.ethz.ch

20 March 2020

1/29

cil.inf.ethz.ch

2/29

Section 1

Motivation: Word Embeddings

3/29

Motivation: Embeddings

I Lexical Semantics

I natural language: atomic units of meaning are symbols – words or
phrases

I symbols rarely carry their meaning “on them”

I meaning of a word: its use in language (Wittgenstein, 1953)

I Semantic Representation

I given: examples of word uses in a corpus (word occurrences)

I goal: learn word representations that capture word meanings

I most basic representation: embed symbols in vector space

I vector space structure (e.g. angles, distances) should relate to word
meaning

I applies more broadly to other symbols (identifiable events)

4/29

Distributional Context Models

I Predict context word given “active” word = skip-gram model

pθ(w|w′) = probability that w occurs in context window of w′

I Distributional semantics model =
distribution of co-occurring words
determines lexical semantics

5/29

Section 2

Basic Model

6/29

Context Model Likelihood

I Objective function (log-likelihood) = predictive score

L(θ;w) =

T∑
t=1

∑
4∈I

log pθ(w
(t+4) |w(t))

I w = w(1), . . . , w(T), sequence of words (implicitly padded)

I window of offsets I = {−R, . . . ,−1, 1, . . . , R}

I alternatively: words within the same sentence

I Maximum likelihood estimation: θ̂ = arg maxθ L(θ;w)

I prefer model that assigns high probability to observed context

I key question: how to define an appropriate model pθ(w |w′)?

7/29

Latent Vector Model: Basic Model

I Latent vector representation of words = embedding

w 7→ (xw, bw) ∈ Rd+1, (vector + bias)

8/29

Latent Vector Model: Basic Model

I Latent vector representation of words = embedding

w 7→ (xw, bw) ∈ Rd+1, (vector + bias)

I Define log-bilinear model

log pθ(w |w′) = 〈xw,xw′〉+ bw + const.

I symmetric bilinear form fitted to log-probabilities

I normalization constant (see below)

I Main effects:

I unspecific: bw ↑ =⇒ pθ(w |w′) ↑ ∀w′

I specific: ∠(xw,xw′) ↓ =⇒ pθ(w |w′) ↑
I inner products: interactions; biases: marginals

9/29

Latent Vector Model: Basic Model (cont’d)

I Exponentiating =⇒ soft-max

pθ(w |w′) =
exp [〈xw,xw′〉+ bw]

Zθ(w′)

I partition function (normalization constant):

Zθ(w
′) :=

∑
v∈V

exp [〈xv,xw′〉+ bv]

I model parameters:

θ = ((xw, bw)w∈V) ∈ R(d+1)·|V|

10/29

Section 3

Skip-Gram Model

11/29

Latent Vector Model: Challenges

I Log-likelihood of basic model

L(θ;w) =

T∑
t=1

∑
4∈I

[
bw(t+4) ok

+〈xw(t+4) ,xw(t)〉 bi-linear←− #1

− log
∑
v∈V

exp [〈xv,xw(t)〉+ bv] large cardinality←− #2]

12/29

Modification # 1: Context Vectors

I Distinguish output vocabulary V and input vocabulary C

I Introduce two different embeddings

I xw: output embeddings, w ∈ V
I yw: input embeddings, w ∈ C

I Use mixed inner products

log pθ(w |w′) = 〈xw,yw′〉+ bw

I Discussion

I Pros: modelling flexibility; Cons: model dimensionality

I simpler model xw = yw for w ∈ V ∩ C (not commonly used)

13/29

Modification # 2: Objective

I Alternatives to maximum likelihood:

I Contrastive divergence (word2vec, Mikolov et al. 2013)

I Negative sampling (Mikolov et al. 2013)

I Pointwise mutual information (Levy & Goldberg 2014)

I Weighted squared loss (GloVe, Pennigton et al. 2013)

I Active area of research ...

14/29

Negative Sampling

I Reduce estimation to binary classification =⇒
noise contrastive estimation (Gutmann & Hyvärinnen, 2010)

I Simplified version: negative sampling
I pn(i, j): probability to generate negative example of word pairs

(wi, wj) – can be defined quite arbitrary

I observed pairs =⇒ positive training examples 4+

I pairs sampled from pn =⇒ negative training examples 4−

I Perform logistic regression, σ(z) := 1
1+exp(−z) , i.e. maximize

L(θ) =
∑

(i,j)∈4+

log σ(〈xi,yj〉) +
∑

(i,j)∈4−
log σ(−〈xi,yj〉)

15/29

Negative Sampling (cont’d)

I How to sample negative examples?

I Distribution pn

I re-use active words (from data) =⇒ defines wi

I sample “random” context words: wj ∝ P (wj)
α, e.g. α = 3/4

I (exponent dampens frequent words)

I How many negative samples?

I oversample by a factor k

I practical choices k = 2− 20, smaller for larger data sets

16/29

Negative Sampling & PMI

I Bayes optimal discriminant for L

h∗ij = σ−1
(

κp(wi, wj)

κp(wi, wj) + (1− κ)pn(wi, wj)

)
= log

p(wi, wj)

pn(wi, wj)
+ log

κ

1− κ

where κ = 1/(k + 1).

I For k = 1 (no oversampling) and pn(wi, wj) = p(wi)p(wj):
pointwise mutual information

〈xi,yj〉 ≈ PMI(wi, wj)

17/29

Section 4

GloVe

18/29

Co-Occurrence Matrix

I Summarize data in co-occurrence matrix

N = (nij) ∈ N|V|·|C|,

nij = # occurrences of wi ∈ V in context of wj ∈ C

I e.g. wi = ”castle”, wj = ”king”, then nij = how often did word
”castle” occur in a context of word ”king”

I Practicalities

I N can be computed in one pass over the text corpus

I sparse matrix, most entries 0

19/29

GloVe Objective

I Weighted least squares fit of log-counts

H(θ;N) =
∑
i,j

f(nij)

log nij︸ ︷︷ ︸
target

− log p̃θ(wi|wj)︸ ︷︷ ︸
model

2

,

with unnormalized distribution

p̃θ(wi|wj) = exp [〈xi,yj〉+ bi + cj]

and weighting function f

20/29

GloVe Weighting

I Weighting function

f(n) = min

{
1,

(
n

nmax

)α}
, α ∈ (0; 1] e.g. α = 3

4

I Motivation

I cut-off at nmax: limit influence of large counts (frequent words)

I f(n)→ 0 for n→ 0: as small counts are (very!) noisy

I specific form with exponent α: heuristically chosen

21/29

Normalized vs. Unnormalized Models

I Normalized model

I requires computation of partition function

I general case over state space Ω

p(ω) =
exp [h(ω)]∑

ω′∈Ω exp [h(ω′)]

I log-likelihood

L =
∑
t

log p(ωt)

I h(ω) ↑ =⇒ p(ω) ↑ =⇒ log p(ω) ↑ =⇒ L ↑
(higher prob. better)

I counterbalanced by normalization: cannot be large everywhere

22/29

Normalized vs. Unnormalized Models (cont’d)

I Unnormalized model

I no computation of partition function

p̃(ω) = exp [h(ω)]

I use two-sided loss function

I GloVe: quadratic loss with log-counts as targets

I p̃(ω) should neither be too large nor too small

23/29

Matrix Decomposition

I Absorb bias into vectors (wlog)

xw,d−1 = 1, xw,d = bw and yw,d−1 = cw, yw,d = 1.

I Define
M = (mij), mij := log nij

X :=
[
xw1 · · ·xw|V|

]
, Y :=

[
yw1 · · ·yw|C|

]

24/29

Matrix Decomposition (cont’d)

I GloVe with f := 1 solves a matrix factorization problem

min
X,Y

‖M−X>Y‖2F

I GloVe: separate weight for each entry (data-dependent)
=⇒ need to go beyond SVD

I Exercise: GloVe with f(nij) :=

{
1 if nij > 0,

0 otherwise.

solves a matrix completion problem

min
X,Y

∑
ij :nij>0

(
mij − (X>Y)ij

)2

25/29

GloVe Optimization (no!)

I Non-convex problem: hard to find global minimum

I Gradient descent (aka steepest descent)

θnew ← θold − η∇θH(θ;N), η > 0 (step size)

I θ = ((xw)w∈V , (yw)w∈C), embeddings = parameters

I full gradient: often too expensive to compute

26/29

GloVe Optimization (yes!)

I Use stochastic optimization to find local minimum

I Stochastic gradient descent (SGD):

I sample (i, j) such that nij > 0 uniformly at random

I perform ”cheap” update (single entry and sparse)

xnew
i ← xi + 2ηf(nij) (log nij − 〈xi,yj〉)yj

ynew
j ← yj + 2ηf(nij) (log nij − 〈xi,yj〉)xi

27/29

Word Similarity

28/29

Affine Embedding Structure

I Word vector analogies

I 2d-projection

29/29

Word Embeddings: Discussion

I Word embeddings can model analogies and relatedness
(see previous examples)

I ... but: antonyms (”cheap” vs. ”expensive”) are usually not well
captured

I Word embeddings =⇒ sentence or document embeddings

I simple: aggregation

I sophisticated: convolutional or recurrent neural networks

I use cases: language models, sentiment analysis, text categorization,
machine translation, etc.

I ... more about this in our ”Natural Language Processing” class

	Motivation: Word Embeddings
	Basic Model
	Skip-Gram Model
	GloVe
	Optimization
	Applications

