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Section 1

Motivation



Motivation: Data Clustering

» Given: set of data points x1,...,xy € RP
» Goal: find a meaningful partition of the data
> i.e. an assignment of each data point to a cluster
m:{l,...,N} = {1,...,K} or
m:RP - {1,...,K}
» note: numbering of clusters is arbitrary
> j-th cluster recovered by

7 '(5) C{1,....,N} or CRP



Motivation: Data Clustering

» Clustering via similarity:

» group together similar data points

avoid grouping together dissimilar ones
» uncover hidden group structure of data
> learn a data density model

> may give rise to data compression schemes



Clustering Example
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Figure: A simple clustering example. Left: 1 cluster, right: 2 clusters.



Vector Quantization

Partitioning of the space R”

v

v

Clusters represented by centroids u; € RP.

v

Mapping induced via nearest centroid rule

7(x) = argmin ||u; — x|
j=1,..,

v

Voronoi (or Dirichlet) tesselation of R”



Color Reduction by Vector Quantization
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Figure: Top: original images, Bottom: image represented with 10 colors,
selected by clustering color vectors in RGB space.



Section 2

K-Means



Encoding via Indicators

» Formalize clustering problem as optimization problem
» find centroids u; € RP and assignment 7 minimizing ...

> loss function or distortion, e.g. squared Euclidean norm

» Encode 7 via indicator matrix Z € {0, 1}V*K

{1 if m(x;) = j
Zij =

0 otherwise

» note that

K
J=1



Objective Function

» K -means objective function
N K
J(U,Z) = 2l —uy
i=1 j=1

=X -UZ"|%

» where

X =[x xy] € RP*N " data matrix

RDXK

U=[u - ug| € , centroid matrix.



K-means Algorithm: Ildea

» How do we minimize the K-means objective?

» Simple observation:

» determining optimal centroids given assignments is easy
(continuous variables)
» determining optimal assignments given centroids is easy (integer

variables)

» Computational strategy: alternating minimization



K-means Algorithm: Optimal Assignment

» Compute optimal assignment Z, given centroids U

» each data point contributes to exactly one term in outer sum

» minimize assignment of each data point separately

25

1 if j = argmin,, ||x; — ug|?
0 otherwise

» map each data point to the closest centroid



K-means Algorithm: Optimal Centroids

» Compute optimal choice of U, given assignments Z

» continuous variables: compute gradient and set to zero
(1st order optimality condition)

> look at (partial) gradient for every centroid u,

Vu,J(U,Z) Zz” 5V, lIxi — uj||
——
=u;—X;
> setting gradient to zero
) ZN Zii X
VuJ(U,Z)=0 = uj==E517070 |sz” >1
Zz 1%ij

» centroid condition (center of mass of assigned data points)



K-means Algorithm: Summary

initialize U on K distinct random data points
initialize Z < Z*(U)
repeat

U «+ U*(Z) (see above)

Zrv + Z*(U) (see above)

same = (Z"V == 7Z)

7« Znew

until (same)

» different initialization strategies, here: random points

» better handling of empty clusters: random re-initialization



K-means Algorithm:

» Computational cost of each iteration is O(knd)

» K-means convergence is guaranteed

» non-increasing objective, bounded from below by 0

» K-means optimizes a non-convex objective

» we are not guaranteed to find the global optimum



lllustration of the K-means Algorithm

Figure: Bishop, Pattern Recognition & Machine Learning, Springer (2006).



K-means++

» More sophisticated seeding: Arthur & Vassilvitskii, 2007
» Incremental D? sampling
» Initial centroid set U1 = {x;}, where I ~ Uniform[1 : N]
» Fork=1... K -1
D; := min ||x; —u|, Upt1:=UrU{xs}, where
uely,
D2

N

» more expensive (though: parallelization), but consistently better
experimental results

I ~ Categorical(p), p;:=

» theoretical guarantee: O(log K)-competitiveness in expectation



Core Sets for K-means
» Recent research, e.g.: Bachem, Lucic, Krause, 2018: Scalable
k-Means Clustering via Lightweight Coresets

» Sample (multi-)set (core set) of size m

1 D?
I ~ Categ(p), pi=sv+ v D} = ||xi — p?
) 27 )
2N 23 =1 Dj

1

1 L. . .
b= 7 >_;X;. Then: give each sample a relative weight P

» Perform weighted K-means on core set (then: map all data
points to closest prototype).

> e-approximation guarantees (with probability §) for

dklogk+logl/d
x =

m



Section 3

Mixture Models



Probabilistic Clustering

From hard to probabilistic assignments
» K-means: each data point assigned to exactly one cluster

> probabilistic or "soft” assignments: assign x; to each cluster j
with some probability z;;

» generalize (relax) constraints on Z

zi; € [0;1] (Y1, 7),

HMN



Cluster Conditional Probability Distributions

Mocdel each cluster by a probability distribution
» Simplest choice: multivariate normal distribution

» PDF (probability density function) of univariate Gaussian with
mean 4 and variance o2

1

oV 2

pz;p,0) =

> Isotropic multivariate normal distribution with mean g, density:

Do

p(;p0) = [—=

0 2

(@i — /M)2]

exp [ 952



Cluster Conditional Probability Distributions

» Multivariate normal distribution with covariance matrix 3, density:

1

(X§ ;2>: 1
PR sk an)

1 .
5 exp [—5(x— ) 7 (x — )
2

» 3. symmetric, positive definite

» generally difficult to estimate for large D: D + WTIW parameters



Probabilistic Clustering Model
» Finite Mixture Model

K
p(X,H):Zﬂ'] p(X79J)7 9:(71—7017"'761() ERK—'—K.M
j=1

> mixing proportions ™ > 0, Ejil mp=1
» component density functions p(x;6;) with 6; € RM
» Mixture models for clustering
> relative cluster sizes = m; (j =1,...,K)
» location & "shape” of clusters = specific form of p(x;0;)

» special case: Gaussian densities with, 6; = ( p; , ;)
~—

location shape



Gaussian Mixture Model

» Gaussian Mixture Model (GMM):

K
p(x;0) = Zﬂ'j p(x; pj, 3;)  (normal densities)
j=1

» Two-stage generative model: generate a data point as follows

» sample cluster index from categorical distribution
j ~ Categorical ()

» given j, sample a data point x from the j-th component
x ~ Normal(p;, %)

» Cluster index j: latent variable; final outcome x: observed

» Probabilistic clustering: compute posteriors of latent cluster
memberships ...



Complete Data Distribution

» Explicitly introduce latent variables into generative model

» Assignment variable (for a generic data point)

K
z € {0, 1}, sz =1.
j=1

» Categorical distribution

K

Pr(zj=1)=m; or pg(z)= HW;J'
j=1

» Joint distribution over (x,z) (complete data distribution)

K
p(x,2;0) = ijpxﬁ
7=1



Posterior Assignments

» Generation: given z, generate Xx; Inference: given x, infer z

» Bayes rule

» reminder, posterior p(A|B) = %

> here: p(A) prior, p(B|A) likelihood and p(B) evidence
» Posterior probabilities for assignments

Pr(z; = 1)p(x | z; = 1) _ p(x;0;)
SE P =Dpx |z =1) S5 mp(x;6)

Pr(z; =1|x) =

> assumes access to parameters w, {6; = (p;,3;)}



Maximum Likelihood: Mixture Model

» MLE requires to optimize

N K
6 = arg max E log E 7j p(xi;6;)
0 ‘ -
=1 7j=1

» Challenge: summation over j inside the logarithm

= MLE has no closed-form solution



Lower Bounding the Log-Likelihood

» Expectation Maximization
» maximize a lower bound on the log-likelihood

» based on complete data distribution
» Specifically:

& 5w p(x:6))
logp(x; 0) =log | " p(x;6;)| =log Z%’iq,
j=1 j=1 J

K
Z [log p(x;0;) + log m; — log g;]

» follows from Jensen's inequality (concavity of logarithm)

» can be done for the contribution of each data point (additive)



Mixture Model: Expectation Step

» Optimize bound with regard to the distribution ¢

» formulate Lagrangian (decoupled for each data point)

K K

max § > q; [logp(x; 0;) +logm; —logqi] + A [ g5 —1
j=1 Jj=1

» first order optimality condition (setting gradient to zero):
logp(x;ej) +10g7‘rj — logqj — 14X ; 0 <«
q* _ 5 p(x; 9]) Bayes rule
=y enmmvaredli
LYl (ki 6)

» optimal g—distribution equals posterior (given the parameters)

Pr(z; =1 x)

» E-—step selects the best lower bound on the log-likelihood



Mixture Model: Maximization Step

» Optimize expected complete data log-likelihood with regard to the
model parameters

» problem decouples for each cluster and with regard to «

» solution for mixing proportions 7

1 N
W; = NZQij
i=1

» solution for 6; = (p;,3;)

N N
o Dieq TijXi e Do Qi (Ri — ) (% — py) "
=N M= N

D im1 Gij >im1 Qi



Expectation Maximization Algorithm

» Alternate E-step and M-step

» both E- and M-step maximize the same (bounded) objective
» guaranteed convergence towards a point 6*

> like in K-means: 0* may not be the global maximizer

» convergence criterion (e.g. change in objective)

» E-step: compute probabilistic assignments of points to clusters
(keeping their location and shape fixed)

» M-step: recompute optimal cluster locations and shapes, given
probabilistic assignments



Example of EM for Gaussian Mixtures
Illustration of the EM algorithm using the Old Faithful data set.
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Figure: Gaussian mixture model fitting via EM for two clusters. Remark:
here the covariance is also estimated (illustrated by the two ellipsoids).



Comparison with K-means

» Assignments
» K-means algorithm: hard assignment points to clusters
» EM algorithm: soft assignment based on posteriors
» Shapes
» K-means: spherical cluster shapes, uniform spread
» EM algorithm: can learn covariance matrix
» K-means as a special case

» Gaussian mixture model with (fixed) covariances ¥; = I
> in the limit of o — 0, recover K-means (hard assignments)

» can be more formally derived (EM objective — K-means objective)



Practical Points about K-means and EM

» EM algorithm

> takes many more iterations to reach convergence

» each cycle requires significantly more computation.
» K-means algorithm can be used to find a good initialization

» covariance matrices can be initialized to the sample covariances of
the clusters found by the K-means algorithm.

» mixing coefficients can be set to the fractions of data points
assigned to the respective clusters



Section 4

Model Selection



Occam’s Razor

William Occam:
Entities must not be multiplied
beyond necessity.

TITANIUM
ADVANCED
SWIVEL HEAD




Model order selection: General principle

Trade-off between two conflicting goals:

Data fit: We want to predict the data well, e.g., maximize the
likelihood. The likelihood usually increases with
increasing number of clusters.

Complexity: Choose a model that is not very complex which is
often measured by the number of free parameters.

Find a compromise between these two goals!



Better fit with increasing K

Negative Log-Likelihood of data for K mixture Gaussians:

N K
—logp(X;0) = — Zlog Zﬂ'j p(x4;0;)
i=1 j=1

> smaller negative 1800
log-likelihood = better fit 1700
i ) B 1600
» decreasing with K (some £
. .. £ 1500
noise due to local minima) 5
< 1400
1300

1200,
0 5 10 15 20 25 30
number of clusters (K)



AIC and BIC

» Model complexity: can be measured by the number of free
parameters k(-).

» Different Heuristics for choosing K
» Akaike Information Criterion (AIC)
AIC(0|1X) = —logp(X;0) + k(0)

» Bayesian Information Criterion (BIC)
1
BIC(0|X) = —logp(X;0) + 55(6‘) log N

» Generally speaking, the BIC criterion penalizes complexity more
than the AIC criterion.



AIC and BIC: Remarks and Example
Analysis

A single AIC (BIC) result is meaningless. One has to repeat the
analysis for different K's and compare the differences: the most

suitable number of clusters corresponds to the smallest AIC (BIC)
value.

Example (Mixture of Gaussians)

» Number of free parameters (with fixed covariance matrices)
k(0) =K-D+ (K —1).
» Number of free parameters (with full covariance matrices)

K(0) = K- <D+ D(DQH)> +(K—1).



AIC and BIC example: 3 clusters
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Figure: Information criteria for a synthetic dataset with 3 clusters.
Synthetic data has smaller variance on the left than on the right.



AIC and BIC example: 5 clusters
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Information criteria for a synthetic dataset with 5 clusters.



Questions

1. Lecture 5, Slide 16
Why takes the optimal Bayes discriminant this form?
Why is this related to the pointwise mutual information?
2. Lecture 6, Slide 18:
Why does one choose a sample weighting mipi?
3. Lecture 6, Slide 29:
What is the role of the Lagrange multiplier \?
Why do we not have to enforce the non-negativity of the g;'s?
4. Lecture 6, Slide 30:
How are these paremeter estimation equations derived?
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