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Section 1

Motivation
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Motivation: Data Clustering

I Given: set of data points x1, . . . ,xN ∈ RD

I Goal: find a meaningful partition of the data

I i.e. an assignment of each data point to a cluster

π : {1, . . . , N} → {1, . . . ,K} or

π : RD → {1, . . . ,K}

I note: numbering of clusters is arbitrary

I j-th cluster recovered by

π−1(j) ⊆ {1, . . . , N} or ⊆ RD
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Motivation: Data Clustering

I Clustering via similarity:

I group together similar data points

avoid grouping together dissimilar ones

I uncover hidden group structure of data

I learn a data density model

I may give rise to data compression schemes
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Clustering Example
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Figure: A simple clustering example. Left: 1 cluster, right: 2 clusters.
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Vector Quantization

I Partitioning of the space RD

I Clusters represented by centroids uj ∈ RD.

I Mapping induced via nearest centroid rule

π(x) = argmin
j=1,...,K

‖uj − x‖

I Voronoi (or Dirichlet) tesselation of RD



7/43

Color Reduction by Vector Quantization

Figure: Top: original images, Bottom: image represented with 10 colors,
selected by clustering color vectors in RGB space.
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Section 2

K-Means
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Encoding via Indicators

I Formalize clustering problem as optimization problem

I find centroids uj ∈ RD and assignment π minimizing ...

I loss function or distortion, e.g. squared Euclidean norm

I Encode π via indicator matrix Z ∈ {0, 1}N×K

zij :=

{
1 if π(xi) = j

0 otherwise

I note that K∑
j=1

zij = 1 (∀i)
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Objective Function

I K-means objective function

J(U,Z) =

N∑
i=1

K∑
j=1

zij‖xi − uj‖2

= ‖X−UZ>‖2F

I where

X = [x1 · · · xN ] ∈ RD×N , data matrix

U = [u1 · · · uK ] ∈ RD×K , centroid matrix .
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K-means Algorithm: Idea

I How do we minimize the K-means objective?

I Simple observation:

I determining optimal centroids given assignments is easy
(continuous variables)

I determining optimal assignments given centroids is easy (integer
variables)

I Computational strategy: alternating minimization
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K-means Algorithm: Optimal Assignment

I Compute optimal assignment Z, given centroids U

I each data point contributes to exactly one term in outer sum

I minimize assignment of each data point separately

z∗ij =

{
1 if j = argmink ‖xi − uk‖2

0 otherwise

I map each data point to the closest centroid
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K-means Algorithm: Optimal Centroids

I Compute optimal choice of U, given assignments Z

I continuous variables: compute gradient and set to zero

(1st order optimality condition)

I look at (partial) gradient for every centroid uj

∇uj
J(U,Z) =

N∑
i=1

zij
1
2∇uj

‖xi − uj‖2︸ ︷︷ ︸
=uj−xi

I setting gradient to zero

∇UJ(U,Z)
!
= 0 =⇒ u∗j =

∑N
i=1 zij xi∑N
i=1 zij

, if
N∑
i=1

zij ≥ 1

I centroid condition (center of mass of assigned data points)
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K-means Algorithm: Summary

initialize U on K distinct random data points

initialize Z← Z∗(U)

repeat

U← U∗(Z) (see above)

Znew ← Z∗(U) (see above)

same = (Znew == Z)

Z← Znew

until (same)

I different initialization strategies, here: random points

I better handling of empty clusters: random re-initialization
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K-means Algorithm:

I Computational cost of each iteration is O(knd)

I K-means convergence is guaranteed

I non-increasing objective, bounded from below by 0

I K-means optimizes a non-convex objective

I we are not guaranteed to find the global optimum
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Illustration of the K-means Algorithm
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Figure: Bishop, Pattern Recognition & Machine Learning, Springer (2006).
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K-means++

I More sophisticated seeding: Arthur & Vassilvitskii, 2007

I Incremental D2 sampling

I Initial centroid set U1 = {xI}, where I ∼ Uniform[1 : N ]

I For k = 1 . . .K − 1

Di := min
u∈Uk

‖xi − u‖, Uk+1 := Uk ∪ {xI}, where

I ∼ Categorical(p), pi :=
D2

i∑N
j=1D

2
j

I more expensive (though: parallelization), but consistently better
experimental results

I theoretical guarantee: O(logK)-competitiveness in expectation
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Core Sets for K-means

I Recent research, e.g.: Bachem, Lucic, Krause, 2018: Scalable
k-Means Clustering via Lightweight Coresets

I Sample (multi-)set (core set) of size m

I ∼ Categ(p), pi :=
1

2N
+

D2
i

2
∑N

j=1D
2
j

, D2
i = ‖xi − µ‖2

µ := 1
N

∑
i xi. Then: give each sample a relative weight 1

mpi
.

I Perform weighted K-means on core set (then: map all data
points to closest prototype).

I ε-approximation guarantees (with probability δ) for

m ∝ d k log k + log 1/δ

ε2



19/43

Section 3

Mixture Models
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Probabilistic Clustering

From hard to probabilistic assignments

I K-means: each data point assigned to exactly one cluster

I probabilistic or ”soft” assignments: assign xi to each cluster j
with some probability zij

I generalize (relax) constraints on Z

zij ∈ [0; 1] (∀i, j),
K∑
j=1

zij = 1 (∀i)
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Cluster Conditional Probability Distributions

Mocdel each cluster by a probability distribution

I Simplest choice: multivariate normal distribution

I PDF (probability density function) of univariate Gaussian with
mean µ and variance σ2:

p(x;µ, σ) =
1

σ
√
2π

exp

[
−(x− µ)2

2σ2

]
I Isotropic multivariate normal distribution with mean µ, density:

p(x;µ, σ) =

D∏
i=1

1

σ
√
2π

exp

[
−(xi − µi)2

2σ2

]
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Cluster Conditional Probability Distributions

I Multivariate normal distribution with covariance matrix Σ, density:

p(x;µ;Σ) =
1

|Σ|
1
2 (2π)

D
2

exp

[
−1

2
(x− µ)>Σ−1(x− µ)

]

I Σ: symmetric, positive definite

I generally difficult to estimate for large D: D + (D+1)D
2 parameters
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Probabilistic Clustering Model

I Finite Mixture Model

p(x; θ) =

K∑
j=1

πj p(x; θj), θ = (π, θ1, . . . , θK) ∈ RK+K·M

I mixing proportions π ≥ 0,
∑K

j=1 πj = 1

I component density functions p(x; θj) with θj ∈ RM

I Mixture models for clustering

I relative cluster sizes = πj (j = 1, . . . ,K)

I location & ”shape” of clusters = specific form of p(x; θj)

I special case: Gaussian densities with, θj = ( µj︸︷︷︸
location

, Σj︸︷︷︸
shape

)
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Gaussian Mixture Model

I Gaussian Mixture Model (GMM):

p(x; θ) =

K∑
j=1

πj p(x;µj ,Σj) (normal densities)

I Two-stage generative model: generate a data point as follows

I sample cluster index from categorical distribution
j ∼ Categorical(π)

I given j, sample a data point x from the j-th component
x ∼ Normal(µj ,Σj)

I Cluster index j: latent variable; final outcome x: observed

I Probabilistic clustering: compute posteriors of latent cluster
memberships ...
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Complete Data Distribution

I Explicitly introduce latent variables into generative model

I Assignment variable (for a generic data point)

z ∈ {0, 1}K ,
K∑
j=1

zj = 1.

I Categorical distribution

Pr(zj = 1) = πj or pπ(z) =

K∏
j=1

π
zj
j

I Joint distribution over (x, z) (complete data distribution)

p(x, z; θ) =

K∏
j=1

[πj p(x; θj)]
zj
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Posterior Assignments

I Generation: given z, generate x; Inference: given x, infer z

I Bayes rule

I reminder, posterior p(A|B) = p(B|A)p(A)
p(B)

I here: p(A) prior, p(B|A) likelihood and p(B) evidence

I Posterior probabilities for assignments

Pr(zj = 1 | x) = Pr(zj = 1)p(x | zj = 1)∑K
l=1 Pr(zl = 1)p(x | zl = 1)

=
πj p(x; θj)∑K
l=1 πl p(x; θl)

I assumes access to parameters π, {θj = (µj ,Σj)}
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Maximum Likelihood: Mixture Model

I MLE requires to optimize

θ̂ = argmax
θ

N∑
i=1

log

 K∑
j=1

πj p(xi; θj)


I Challenge: summation over j inside the logarithm

⇒ MLE has no closed-form solution
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Lower Bounding the Log-Likelihood

I Expectation Maximization
I maximize a lower bound on the log-likelihood

I based on complete data distribution

I Specifically:

log p(x; θ) = log

 K∑
j=1

πj p(x; θj)

 = log

 K∑
j=1

qj
πj p(x; θj)

qj


≥

K∑
j=1

qj [log p(x; θj) + log πj − log qj ]

I follows from Jensen’s inequality (concavity of logarithm)

I can be done for the contribution of each data point (additive)
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Mixture Model: Expectation Step

I Optimize bound with regard to the distribution q

I formulate Lagrangian (decoupled for each data point)

max
q


K∑
j=1

qj [log p(x; θj) + log πj − log qj ] + λ

 K∑
j=1

qj − 1


I first order optimality condition (setting gradient to zero):

log p(x; θj) + log πj − log qj − 1 + λ
!
= 0 ⇐⇒

q∗j =
πj p(x; θj)∑K
l=1 πl p(x; θl)

Bayes rule
= Pr(zj = 1 | x)

I optimal q–distribution equals posterior (given the parameters)

I E–step selects the best lower bound on the log-likelihood
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Mixture Model: Maximization Step

I Optimize expected complete data log-likelihood with regard to the
model parameters

I problem decouples for each cluster and with regard to π

I solution for mixing proportions π

π∗j =
1

N

N∑
i=1

qij

I solution for θj = (µj ,Σj)

µ∗j =

∑N
i=1 qijxi∑N
i=1 qij

, Σ∗j =

∑N
i=1 qij (xi − µj)(xi − µj)

>∑N
i=1 qij
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Expectation Maximization Algorithm

I Alternate E-step and M-step

I both E- and M-step maximize the same (bounded) objective

I guaranteed convergence towards a point θ∗

I like in K-means: θ∗ may not be the global maximizer

I convergence criterion (e.g. change in objective)

I E-step: compute probabilistic assignments of points to clusters
(keeping their location and shape fixed)

I M-step: recompute optimal cluster locations and shapes, given
probabilistic assignments
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Example of EM for Gaussian Mixtures
Illustration of the EM algorithm using the Old Faithful data set.
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Figure: Gaussian mixture model fitting via EM for two clusters. Remark:
here the covariance is also estimated (illustrated by the two ellipsoids).
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Comparison with K-means

I Assignments

I K-means algorithm: hard assignment points to clusters

I EM algorithm: soft assignment based on posteriors

I Shapes

I K-means: spherical cluster shapes, uniform spread

I EM algorithm: can learn covariance matrix

I K-means as a special case

I Gaussian mixture model with (fixed) covariances Σj = σ2I

I in the limit of σ → 0, recover K-means (hard assignments)

I can be more formally derived (EM objective → K-means objective)
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Practical Points about K-means and EM

I EM algorithm

I takes many more iterations to reach convergence

I each cycle requires significantly more computation.

I K-means algorithm can be used to find a good initialization

I covariance matrices can be initialized to the sample covariances of
the clusters found by the K-means algorithm.

I mixing coefficients can be set to the fractions of data points
assigned to the respective clusters
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Section 4

Model Selection
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Occam’s Razor

William Occam:

Entities must not be multiplied
beyond necessity.
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Model order selection: General principle

Trade-off between two conflicting goals:

Data fit: We want to predict the data well, e.g., maximize the
likelihood. The likelihood usually increases with
increasing number of clusters.

Complexity: Choose a model that is not very complex which is
often measured by the number of free parameters.

Find a compromise between these two goals!
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Better fit with increasing K

Negative Log-Likelihood of data for K mixture Gaussians:

− log p(X; θ) = −
N∑
i=1

log

 K∑
j=1

πj p(xi; θj)

 .

I smaller negative
log-likelihood = better fit

I decreasing with K (some
noise due to local minima)
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AIC and BIC

I Model complexity: can be measured by the number of free
parameters κ(·).

I Different Heuristics for choosing K

I Akaike Information Criterion (AIC)

AIC(θ|X) = − log p(X; θ) + κ(θ)

I Bayesian Information Criterion (BIC)

BIC(θ|X) = − log p(X; θ) +
1

2
κ(θ) logN

I Generally speaking, the BIC criterion penalizes complexity more
than the AIC criterion.
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AIC and BIC: Remarks and Example

Analysis

A single AIC (BIC) result is meaningless. One has to repeat the
analysis for different Ks and compare the differences: the most
suitable number of clusters corresponds to the smallest AIC (BIC)
value.

Example (Mixture of Gaussians)

I Number of free parameters (with fixed covariance matrices)

κ(θ) = K·D + (K − 1).

I Number of free parameters (with full covariance matrices)

κ(θ) = K·
(
D +

D(D + 1)

2

)
+ (K − 1).
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AIC and BIC example: 3 clusters
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Figure: Information criteria for a synthetic dataset with 3 clusters.
Synthetic data has smaller variance on the left than on the right.
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AIC and BIC example: 5 clusters
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Figure: Information criteria for a synthetic dataset with 5 clusters.
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Questions

1. Lecture 5, Slide 16
Why takes the optimal Bayes discriminant this form?
Why is this related to the pointwise mutual information?

2. Lecture 6, Slide 18:
Why does one choose a sample weighting 1

mpi
?

3. Lecture 6, Slide 29:
What is the role of the Lagrange multiplier λ?
Why do we not have to enforce the non-negativity of the qj ’s?

4. Lecture 6, Slide 30:
How are these paremeter estimation equations derived?
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