Computational Intelligence Laboratory Lecture 6 Data Clustering and Mixture Models

Thomas Hofmann

ETH Zurich – <cil.inf.ethz.ch>

27 March 2020

K □ ▶ K n ④ ▶ K ミ ▶ K ミ ▶ → ミ → ⊙ Q Q → 1/43

Section 1

[Motivation](#page-1-0)

4 미 시 4 대 시 제 기 시 제 가 시 제 제 제 제 제 제 제 제 제 제 제 제 제 기
2010년 1월 20일 1월 1월
1월 20일 1월 20일 1월

Motivation: Data Clustering

- \blacktriangleright Given: set of data points $\mathbf{x}_1,\ldots,\mathbf{x}_N \in \mathbb{R}^D$
- \triangleright Goal: find a meaningful partition of the data
	- \triangleright i.e. an assignment of each data point to a cluster

$$
\pi: \{1, \ldots, N\} \to \{1, \ldots, K\} \quad \text{or}
$$

$$
\pi: \mathbb{R}^D \to \{1, \ldots, K\}
$$

- \triangleright note: numbering of clusters is arbitrary
- \rightarrow *j*-th cluster recovered by

$$
\pi^{-1}(j) \subseteq \{1, \ldots, N\} \quad \text{or} \quad \subseteq \mathbb{R}^D
$$

4 ロ ▶ 4 @ ▶ 4 할 ▶ 4 할 ▶ 그럴 ▶ 이 할 수 있지 않아요 .
3/43

Motivation: Data Clustering

- \blacktriangleright Clustering via similarity:
	- \triangleright group together similar data points avoid grouping together dissimilar ones
	- \blacktriangleright uncover hidden group structure of data
	- \blacktriangleright learn a data density model
	- \blacktriangleright may give rise to data compression schemes

4/ □ ▶ 4/ □ ▶ 4/ 로 ▶ 4/로 ▶ 그로 → 9/ 9/ 0 4/ 4/ 43

Clustering Example

Figure: A simple clustering example. Left: 1 cluster, right: 2 clusters.

 $A \Box B$ A B B A B B A B B

5/43

 \Rightarrow

 298

Vector Quantization

- \blacktriangleright Partitioning of the space \mathbb{R}^D
- \blacktriangleright Clusters represented by centroids $\mathbf{u}_j \in \mathbb{R}^D.$
- \triangleright Mapping induced via nearest centroid rule

$$
\pi(\mathbf{x}) = \arg\min_{j=1,\dots,K} \|\mathbf{u}_j - \mathbf{x}\|
$$

 \blacktriangleright Voronoi (or Dirichlet) tesselation of \mathbb{R}^D

4 ロ → 4 @ → 4 할 → 4 할 → 1 할 → 9 Q O + 6/43

Color Reduction by Vector Quantization

Figure: Top: original images, Bottom: image represented with 10 colors, selected by clustering color vectors in RGB space.

Section 2

K[-Means](#page-7-0)

8/43

Encoding via Indicators

 \triangleright Formalize clustering problem as optimization problem

- ► find centroids $\mathbf{u}_j \in \mathbb{R}^D$ and assignment π minimizing ...
- \triangleright loss function or distortion, e.g. squared Euclidean norm
- \blacktriangleright Encode π via indicator matrix $\mathbf{Z} \in \{0,1\}^{N \times K}$

$$
z_{ij} := \begin{cases} 1 & \text{if } \pi(\mathbf{x}_i) = j \\ 0 & \text{otherwise} \end{cases}
$$

 \blacktriangleright note that

$$
\sum_{j=1}^{K} z_{ij} = 1 \quad (\forall i)
$$

4 ロ ▶ 4 레 ▶ 4 로 ▶ 4 로 ▶ 그로 → 9 Q Q + g/43

Objective Function

 \blacktriangleright K-means objective function

$$
J(\mathbf{U}, \mathbf{Z}) = \sum_{i=1}^{N} \sum_{j=1}^{K} z_{ij} ||\mathbf{x}_i - \mathbf{u}_j||^2
$$

$$
= ||\mathbf{X} - \mathbf{U}\mathbf{Z}^\top||_F^2
$$

 \blacktriangleright where

$$
\mathbf{X} = [\mathbf{x}_1 \cdots \mathbf{x}_N] \in \mathbb{R}^{D \times N}, \text{ data matrix}
$$

$$
\mathbf{U} = [\mathbf{u}_1 \cdots \mathbf{u}_K] \in \mathbb{R}^{D \times K}, \text{ centroid matrix.}
$$

10 H 4 đH 4 žH 4 žH → Ž → 9 Q Q → 10/43

K-means Algorithm: Idea

- \blacktriangleright How do we minimize the K-means objective?
- \blacktriangleright Simple observation:
	- \triangleright determining optimal centroids given assignments is easy (continuous variables)
	- \triangleright determining optimal assignments given centroids is easy (integer variables)

11/43

 \triangleright Computational strategy: alternating minimization

K-means Algorithm: Optimal Assignment

- \triangleright Compute optimal assignment Z, given centroids U
	- \triangleright each data point contributes to exactly one term in outer sum
	- \triangleright minimize assignment of each data point separately

$$
z_{ij}^* = \begin{cases} 1 & \text{if } j = \arg\min_k \|\mathbf{x}_i - \mathbf{u}_k\|^2 \\ 0 & \text{otherwise} \end{cases}
$$

10 H (日) (정) (정) (정) 정 (정) 22/43

 \triangleright map each data point to the closest centroid

K-means Algorithm: Optimal Centroids

- \triangleright Compute optimal choice of U, given assignments Z
	- \triangleright continuous variables: compute gradient and set to zero (1st order optimality condition)
	- look at (partial) gradient for every centroid \mathbf{u}_i

$$
\nabla_{\mathbf{u}_j} J(\mathbf{U}, \mathbf{Z}) = \sum_{i=1}^N z_{ij} \underbrace{\frac{1}{2} \nabla_{\mathbf{u}_j} ||\mathbf{x}_i - \mathbf{u}_j||^2}_{=\mathbf{u}_j - \mathbf{x}_i}
$$

 \triangleright setting gradient to zero

$$
\nabla_{\mathbf{U}} J(\mathbf{U}, \mathbf{Z}) \stackrel{!}{=} 0 \quad \Longrightarrow \quad \mathbf{u}_j^* = \frac{\sum_{i=1}^N z_{ij} \mathbf{x}_i}{\sum_{i=1}^N z_{ij}}, \quad \text{if } \sum_{i=1}^N z_{ij} \ge 1
$$

 \triangleright centroid condition (center of mass of assigned data points)

K-means Algorithm: Summary

initialize U on K distinct random data points initialize $\mathbf{Z} \leftarrow \mathbf{Z}^*(\mathbf{U})$

repeat

 $\mathbf{U} \leftarrow \mathbf{U}^*(\mathbf{Z})$ (see above) $\mathbf{Z}^{\mathsf{new}} \leftarrow \mathbf{Z}^*(\mathbf{U})$ (see above) same $= (\mathbf{Z}^{\text{new}} == \mathbf{Z})$ $\mathbf{Z} \leftarrow \mathbf{Z}^{\text{new}}$ until (same)

- \blacktriangleright different initialization strategies, here: random points
- better handling of empty clusters: random re-initialization

14/43 42 14/43 14/43

K-means Algorithm:

- \blacktriangleright Computational cost of each iteration is $O(knd)$
- \blacktriangleright K-means convergence is guaranteed
	- non-increasing objective, bounded from below by 0
- \blacktriangleright K-means optimizes a non-convex objective
	- \triangleright we are not guaranteed to find the global optimum

4 ロ ▶ 4 레 ▶ 4 로 ▶ 4 로 ▶ - 로 - 90 Q + 15/43

Illustration of the K -means Algorithm

Figure: Bishop, Pattern Recognition & Machine Learning, Springer (2006). $990 - 16/43$ **≮ロト ⊀伊ト ⊀ミト**

K -means $++$

- ▶ More sophisticated seeding: Arthur & Vassilvitskii, 2007
- \blacktriangleright Incremental D^2 sampling
	- ► Initial centroid set $\mathcal{U}_1 = \{x_I\}$, where $I \sim \text{Uniform}[1:N]$

$$
\blacktriangleright \text{ For } k = 1 \dots K - 1
$$

$$
D_i := \min_{\mathbf{u} \in \mathcal{U}_k} \|\mathbf{x}_i - \mathbf{u}\|, \quad \mathcal{U}_{k+1} := \mathcal{U}_k \cup \{\mathbf{x}_I\}, \quad \text{where}
$$

$$
I \sim \text{Categorical}(\mathbf{p}), \quad p_i := \frac{D_i^2}{\sum_{j=1}^N D_j^2}
$$

- \triangleright more expensive (though: parallelization), but consistently better experimental results
- ightheoretical guarantee: $\mathbf{O}(\log K)$ -competitiveness in expectation

Core Sets for K-means

- ▶ Recent research, e.g.: Bachem, Lucic, Krause, 2018: Scalable k-Means Clustering via Lightweight Coresets
- Sample (multi-)set (core set) of size m

$$
I \sim \text{Categ}(\mathbf{p}), \quad p_i := \frac{1}{2N} + \frac{D_i^2}{2\sum_{j=1}^N D_j^2}, \quad D_i^2 = ||\mathbf{x}_i - \mu||^2
$$

 $\mu := \frac{1}{N} \sum_i \mathbf{x}_i$. Then: give each sample a relative weight $\frac{1}{mp_i}.$

- \triangleright Perform weighted **K-means on core set** (then: map all data points to closest prototype).
- \triangleright ϵ -approximation guarantees (with probability δ) for

$$
m \propto \frac{d k \log k + \log 1/\delta}{\epsilon^2}
$$

18/43 18/43 14/43 14/43 14/43

Section 3

[Mixture Models](#page-18-0)

19/43 19/43 19/43 19/43

Probabilistic Clustering

From hard to probabilistic assignments

- \triangleright K-means: each data point assigned to exactly one cluster
- probabilistic or "soft" assignments: assign x_i to each cluster j with some probability z_{ij}
- **P** generalize (relax) constraints on Z

$$
z_{ij} \in [0; 1] \ (\forall i, j), \quad \sum_{j=1}^{K} z_{ij} = 1 \ (\forall i)
$$

4 ロ → 4 @ ▶ 4 로 → 4 로 → 로 → 9 Q Q → 20/43

Cluster Conditional Probability Distributions

Mocdel each cluster by a probability distribution

- \triangleright Simplest choice: multivariate normal distribution
- \triangleright PDF (probability density function) of univariate Gaussian with mean μ and variance σ^2 :

$$
p(x; \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} \exp \left[-\frac{(x-\mu)^2}{2\sigma^2} \right]
$$

I Isotropic multivariate normal distribution with mean μ , density:

$$
p(\mathbf{x}; \boldsymbol{\mu}, \sigma) = \prod_{i=1}^{D} \frac{1}{\sigma \sqrt{2\pi}} \exp \left[-\frac{(x_i - \mu_i)^2}{2\sigma^2} \right]
$$

4 미 사 4 메 사 4 코 사 4 로 사 후 - 10 이익 이 - 21/43

Cluster Conditional Probability Distributions

 \triangleright Multivariate normal distribution with covariance matrix Σ , density:

$$
p(\mathbf{x}; \boldsymbol{\mu}; \boldsymbol{\Sigma}) = \frac{1}{|\boldsymbol{\Sigma}|^{\frac{1}{2}} (2\pi)^{\frac{D}{2}}} \exp \left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right]
$$

- \blacktriangleright Σ : symmetric, positive definite
- generally difficult to estimate for large $D\colon D+\frac{(D+1)D}{2}$ $\frac{1+1}{2}$ parameters

4 ロ → 4 @ ▶ 4 블 → 4 톤 → 2 로 → 9 Q Q + 22/43

Probabilistic Clustering Model

 \blacktriangleright Finite Mixture Model

$$
p(\mathbf{x};\theta) = \sum_{j=1}^{K} \pi_j p(\mathbf{x};\theta_j), \quad \theta = (\pi, \theta_1, \dots, \theta_K) \in \mathbb{R}^{K+K \cdot M}
$$

- **F** mixing proportions $\pi \geq 0$, $\sum_{j=1}^{K} \pi_j = 1$
- ► component density functions $p(\mathbf{x}; \theta_i)$ with $\theta_i \in \mathbb{R}^M$
- \blacktriangleright Mixture models for clustering
	- relative cluster sizes = π_j $(j = 1, ..., K)$
	- **I** location & "shape" of clusters = specific form of $p(\mathbf{x}; \theta_i)$

 \blacktriangleright special case: Gaussian densities with, $\theta_j = (\begin{array}{c c} \boldsymbol{\mu}_j \end{array}$ $,\,\pmb{\Sigma}_j$)

$$
\underbrace{\sim}_{\text{location shape}}
$$

4 ロ → 4 레 → 4 페 → 4 페 → 세로 → 1 페 페 페 페 페 페 페 페 페 페 페 페 페 페 게
23/43

Gaussian Mixture Model

 \triangleright Gaussian Mixture Model (GMM):

$$
p(\mathbf{x};\theta) = \sum_{j=1}^{K} \pi_j p(\mathbf{x}; \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)
$$
 (normal densities)

▶ Two-stage generative model: generate a data point as follows

- \triangleright sample cluster index from categorical distribution $i \sim$ Categorical (π)
- **Example a data point x from the j-th component** $\mathbf{x} \sim \text{Normal}(\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$
- In Cluster index i : latent variable; final outcome x: observed
- \triangleright Probabilistic clustering: compute posteriors of latent cluster memberships ...

Complete Data Distribution

- \triangleright Explicitly introduce latent variables into generative model
- \triangleright Assignment variable (for a generic data point)

$$
\mathbf{z} \in \{0,1\}^K, \quad \sum_{j=1}^K z_j = 1.
$$

 \blacktriangleright Categorical distribution

$$
\Pr(z_j = 1) = \pi_j \quad \text{or} \quad p_\pi(\mathbf{z}) = \prod_{j=1}^K \pi_j^{z_j}
$$

 \triangleright Joint distribution over (x, z) (complete data distribution)

$$
p(\mathbf{x}, \mathbf{z}; \theta) = \prod_{j=1}^{K} \left[\pi_j \ p(\mathbf{x}; \theta_j) \right]^{z_j}
$$

Posterior Assignments

- Generation: given z, generate x; Inference: given x, infer z
- \blacktriangleright Bayes rule
	- For reminder, posterior $p(A|B) = \frac{p(B|A)p(A)}{p(B)}$
	- In here: $p(A)$ prior, $p(B|A)$ likelihood and $p(B)$ evidence
- \triangleright Posterior probabilities for assignments

$$
\Pr(z_j = 1 \mid \mathbf{x}) = \frac{\Pr(z_j = 1)p(\mathbf{x} \mid z_j = 1)}{\sum_{l=1}^{K} \Pr(z_l = 1)p(\mathbf{x} \mid z_l = 1)} = \frac{\pi_j p(\mathbf{x}; \theta_j)}{\sum_{l=1}^{K} \pi_l p(\mathbf{x}; \theta_l)}
$$

4 ロ → 4 레 → 4 페 → 4 페 → 세로 → 10 페 메 페 페 페 페 페 페 페 페 페 페 페 페 게 페 26/43

Example 3 assumes access to parameters π , $\{\theta_j = (\boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)\}$

Maximum Likelihood: Mixture Model

 \triangleright MLE requires to optimize

$$
\hat{\theta} = \arg \max_{\theta} \sum_{i=1}^{N} \log \left[\sum_{j=1}^{K} \pi_j \ p(\mathbf{x}_i; \theta_j) \right]
$$

4 ロ → 4 @ ▶ 4 블 → 4 블 → 1 를 → 9 9 Q + 27/43

 \blacktriangleright Challenge: summation over *j* inside the logarithm

⇒ MLE has no closed-form solution

Lower Bounding the Log-Likelihood

- \blacktriangleright Expectation Maximization
	- \triangleright maximize a lower bound on the log-likelihood
	- \triangleright based on complete data distribution
- \blacktriangleright Specifically:

$$
\log p(\mathbf{x}; \theta) = \log \left[\sum_{j=1}^{K} \pi_j p(\mathbf{x}; \theta_j) \right] = \log \left[\sum_{j=1}^{K} q_j \frac{\pi_j p(\mathbf{x}; \theta_j)}{q_j} \right]
$$

$$
\geq \sum_{j=1}^{K} q_j \left[\log p(\mathbf{x}; \theta_j) + \log \pi_j - \log q_j \right]
$$

- \triangleright follows from Jensen's inequality (concavity of logarithm)
- \triangleright can be done for the contribution of each data point (additive)

Mixture Model: Expectation Step

- \triangleright Optimize bound with regard to the distribution q
	- \triangleright formulate Lagrangian (decoupled for each data point)

$$
\max_{q} \left\{ \sum_{j=1}^{K} q_j \left[\log p(\mathbf{x}; \theta_j) + \log \pi_j - \log q_j \right] + \lambda \left(\sum_{j=1}^{K} q_j - 1 \right) \right\}
$$

 \triangleright first order optimality condition (setting gradient to zero):

$$
\log p(\mathbf{x}; \theta_j) + \log \pi_j - \log q_j - 1 + \lambda \stackrel{!}{=} 0 \iff
$$

$$
q_j^* = \frac{\pi_j p(\mathbf{x}; \theta_j)}{\sum_{l=1}^K \pi_l p(\mathbf{x}; \theta_l)} \stackrel{\text{Bayes rule}}{=} \Pr(z_j = 1 \mid \mathbf{x})
$$

- poptimal q-distribution equals posterior (given the parameters)
- \blacktriangleright E–step selects the best lower bound on the log-likelihood

Mixture Model: Maximization Step

- \triangleright Optimize expected complete data log-likelihood with regard to the model parameters
	- rianglephent problem decouples for each cluster and with regard to π
	- \blacktriangleright solution for mixing proportions π

$$
\pi_j^* = \frac{1}{N} \sum_{i=1}^N q_{ij}
$$

$$
\blacktriangleright \text{ solution for } \theta_j = (\mu_j, \Sigma_j)
$$

$$
\boldsymbol{\mu}_j^* = \frac{\sum_{i=1}^N q_{ij} \mathbf{x}_i}{\sum_{i=1}^N q_{ij}}, \quad \boldsymbol{\Sigma}_j^* = \frac{\sum_{i=1}^N q_{ij} (\mathbf{x}_i - \boldsymbol{\mu}_j)(\mathbf{x}_i - \boldsymbol{\mu}_j)^\top}{\sum_{i=1}^N q_{ij}}
$$

4 ロ → 4 @ ▶ 4 로 → 4 로 → 트로 → 9 Q O + 30/43

Expectation Maximization Algorithm

- \blacktriangleright Alternate E-step and M-step
	- \triangleright both E- and M-step maximize the same (bounded) objective
	- ► guaranteed convergence towards a point θ^*
	- ► like in K -means: θ^* may not be the global maximizer
	- \triangleright convergence criterion (e.g. change in objective)
- \triangleright E-step: compute probabilistic assignments of points to clusters (keeping their location and shape fixed)
- \triangleright M-step: recompute optimal cluster locations and shapes, given probabilistic assignments

4 ロ → 4 @ ▶ 4 로 → 4 로 → 로 → 9 Q (+ 31/43)

Example of EM for Gaussian Mixtures

Illustration of the EM algorithm using the Old Faithful data set.

Figure: Gaussian mixture model fitting via EM for two clusters. Remark: here the covariance is also estimated (illustrated by the two ellipsoids).

Comparison with K **-means**

- \blacktriangleright Assignments
	- \triangleright K-means algorithm: hard assignment points to clusters
	- \triangleright EM algorithm: soft assignment based on posteriors
- \blacktriangleright Shapes
	- \triangleright K-means: spherical cluster shapes, uniform spread
	- \triangleright EM algorithm: can learn covariance matrix
- \blacktriangleright K-means as a special case
	- \blacktriangleright Gaussian mixture model with (fixed) covariances $\boldsymbol{\Sigma}_j = \sigma^2 \mathbf{I}$
	- in the limit of $\sigma \to 0$, recover K-means (hard assignments)
	- \triangleright can be more formally derived (EM objective \rightarrow K-means objective)

Practical Points about K-means and EM

\blacktriangleright EM algorithm

- \triangleright takes many more iterations to reach convergence
- \triangleright each cycle requires significantly more computation.
- \triangleright K-means algorithm can be used to find a good initialization
	- \triangleright covariance matrices can be initialized to the sample covariances of the clusters found by the K -means algorithm.

34/43 4 4 4 4 4 4 4 2 34/43

 \triangleright mixing coefficients can be set to the fractions of data points assigned to the respective clusters

Section 4

[Model Selection](#page-34-0)

4 ロ → 4 레 → 4 코 → 4 코 → 1 코 → 9 9 0 - 35/43

Occam's Razor

William Occam: Entities must not be multiplied beyond necessity.

4 ロ → 4 @ ▶ 4 블 → 4 블 → 1 를 → 9 9 Q → 36/43

Model order selection: General principle

Trade-off between two conflicting goals:

Data fit: We want to predict the data well, e.g., maximize the likelihood. The likelihood usually increases with increasing number of clusters.

4 ロ → 4 @ ▶ 4 로 → 4 로 → 로 → 9 Q (+ 37/43)

- Complexity: Choose a model that is not very complex which is often measured by the number of free parameters.
- Find a compromise between these two goals!

Better fit with increasing K

Negative Log-Likelihood of data for K mixture Gaussians:

$$
-\log p(\mathbf{X};\theta) = -\sum_{i=1}^{N} \log \left[\sum_{j=1}^{K} \pi_j p(\mathbf{x}_i;\theta_j)\right].
$$

- \blacktriangleright smaller negative log -likelihood $=$ better fit
- \blacktriangleright decreasing with K (some noise due to local minima)

AIC and BIC

- \triangleright Model complexity: can be measured by the number of free parameters $\kappa(\cdot)$.
- \blacktriangleright Different Heuristics for choosing K
	- \triangleright Akaike Information Criterion (AIC)

$$
AIC(\theta|\mathbf{X}) = -\log p(\mathbf{X};\theta) + \kappa(\theta)
$$

 \triangleright Bayesian Information Criterion (BIC)

$$
BIC(\theta|\mathbf{X}) = -\log p(\mathbf{X}; \theta) + \frac{1}{2}\kappa(\theta)\log N
$$

4 ロ ▶ 4 @ ▶ 4 할 ▶ 4 할 ▶ → 할 → 9 Q O + 39/43

 \triangleright Generally speaking, the BIC criterion penalizes complexity more than the AIC criterion.

AIC and BIC: Remarks and Example

Analysis

A single AIC (BIC) result is meaningless. One has to repeat the analysis for different Ks and compare the differences: the most suitable number of clusters corresponds to the smallest AIC (BIC) value.

Example (Mixture of Gaussians)

 \triangleright Number of free parameters (with fixed covariance matrices)

$$
\kappa(\theta) = K \cdot D + (K - 1).
$$

 \triangleright Number of free parameters (with full covariance matrices)

$$
\kappa(\theta) = K \cdot \left(D + \frac{D(D+1)}{2} \right) + (K - 1).
$$

4 ロ ▶ 4 @ ▶ 4 로 ▶ 4 로 ▶ _ 로 _ 9 9 Q 2 = 40/43

AIC and BIC example: 3 clusters

Figure: Information criteria for a synthetic dataset with 3 clusters. Synthetic data has smaller variance on the left than on the right.

AIC and BIC example: 5 clusters

Figure: Information criteria for a synthetic dataset with 5 clusters.

4 ロ → 4 個 → 4 ミ → 4 ミ → 2 → 9 9 0 42/43

Questions

1. Lecture 5, Slide 16

Why takes the optimal Bayes discriminant this form? Why is this related to the pointwise mutual information?

2. Lecture 6, Slide 18:

Why does one choose a sample weighting $\frac{1}{mp_{i}}$?

3. Lecture 6, Slide 29:

What is the role of the Lagrange multiplier λ ? Why do we not have to enforce the non-negativity of the q_i 's?

4 ロ → 4 레 → 4 로 → 4 로 → 3 로 → 9 Q O + 43/43

4. Lecture 6, Slide 30:

How are these paremeter estimation equations derived?