Computational Intelligence Laboratory Lecture 7 Neural Networks

Thomas Hofmann

ETH Zurich - cil.inf.ethz.ch

03 April 2020

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで 1/39

Section 1

Multilayer Perceptrons

↓ □ ▶ ↓ ⓓ ▶ ↓ ≧ ▶ ↓ ≧ ▶ ○ ♀ ○ 2/39

Neural Networks

- Neural network: consist of simple, parametrized computational elements = neurons or units
- Basic operation:
 - each unit implements a generalized linear function: $\mathbb{R}^n \to \mathbb{R}$
 - linear + non-linear activation function $\sigma : \mathbb{R} \to \mathbb{R}$
 - parametrized with weights $\mathbf{w} \in \mathbb{R}^{n+1}$

$$f^{\sigma}(\mathbf{x}; \mathbf{w}) := \sigma \left(w_0 + \sum_{i=1}^n w_i x_i \right) \stackrel{(*)}{=} \sigma(\mathbf{w}^{\top} \mathbf{x})$$

• (*) will ignore/absorb bias parameter w_0 for clarity

Neuron: Schematic View

Activation Functions

 Old school: logistic (or tanh) function

- New school: ReLU (rectified linear unit)
 - ► linear function over half-space $\mathcal{H} = \{\mathbf{x} : \mathbf{w}^\top \mathbf{x} > 0\}$
 - zero on complement $\mathcal{H}^c = \mathbb{R}^n \mathcal{H}$
 - ▶ non-smooth, but simple derivative over ℝ {0}

Multilayer Perceptron

- Arrange such neurons in a layer (here: hidden layer)
- Input layer = raw input x, no computation
- Output layer = final output, class label, response variables

Units and Layers

- Units are arranged in layers
 - \blacktriangleright units indexed by j
 - mapping between layers: vector-valued
 - \blacktriangleright shared choice of σ

$$F^{\sigma}: \mathbb{R}^n \to \mathbb{R}^m, \quad F_j^{\sigma}(\mathbf{x}) = \underbrace{\sigma(\mathbf{w}_j^{\top} \mathbf{x})}_{\text{transfer fct.}}, \quad j = 1, \dots, m$$

• Matrix-vector notation (σ applied elementwise)

$$F^{\sigma}(\mathbf{x}; \mathbf{W}) = \sigma\left(\mathbf{W}\,\mathbf{x}
ight), \quad \mathbf{W} = \begin{pmatrix} \mathbf{w}_{1}^{\top} \\ \dots \\ \mathbf{w}_{m}^{\top} \end{pmatrix}$$

Units and Layers

- Sometimes we want to index layers by l
- Activation vector of l-th layer: $\mathbf{x}^{(l)}$
 - $\mathbf{x}^{(1)}$ is input; $\mathbf{x}^{(L)}$ is output; $\mathbf{x}^{(l)}$ (1 < l < L) hidden layers
 - indexed notation for layer-to-layer forward propagation

$$\mathbf{x}^{(l)} = \sigma^{(l)} \left(\mathbf{W}^{(l)} \mathbf{x}^{(l-1)} \right)$$

Units and Layers

L-layer network: nested function

$$\mathbf{y} = \sigma^{(L)} \left(\mathbf{W}^{(L)} \sigma^{(L-1)} \left(\cdots \left(\sigma^{(1)} \left(\mathbf{W}^{(1)} \mathbf{x} \right) \cdots \right) \right) \right)$$

- Layer width = "more of the same" features
- Network depth = "more compositionality", feature hierarchy (= deep learning)

Output Layer

• Shortcuts
$$\mathbf{W} = \mathbf{W}^{(L)}$$
, $\mathbf{x} = \mathbf{x}^{(L-1)}$

Linear regression: linear activation

$$\mathbf{y} = \mathbf{W}\mathbf{x}$$

Binary classification (one output): logistic

$$y_1 = P(Y = 1 | \mathbf{x}) = \frac{1}{1 + \exp[-\mathbf{w}^\top \mathbf{x}]}$$

Multiclass with K classes: soft-max

$$y_k = P(Y = k \,|\, \mathbf{x}) = \frac{\exp\left[\mathbf{w}_k^\top \mathbf{x}\right]}{\sum_{j=1}^{K} \exp\left[\mathbf{w}_j^\top \mathbf{x}\right]}$$

< □ > < □ > < □ > < Ξ > < Ξ > Ξ · ク Q ? 10/39

MLP Classification vs. Logistic Regression

Logistic regression: computes linear function of inputs

$$P(Y = 1 | \mathbf{x}) = \frac{1}{1 + \exp\left[-\langle \mathbf{w}, \mathbf{x} \rangle\right]}$$

- Multilayer Perceptron
 - learn intermediate feature representation
 - perform logistic regression on learned representation $\mathbf{x}^{(L-1)}$

◆□ → < □ → < Ξ → < Ξ → Ξ · ○ Q ○ 11/39</p>

Learning in Massively Parametrized Models :)

Learning = automatically fiddling with network weights

Loss Function

- How do we adjust, i.e. learn the weights?
- ► First: define a loss function
 - target output y^* , prediction y
 - ▶ loss function $\ell(y^*; y)$
- ▶ Squared loss, $y^*, y \in \mathbb{R}$

$$\ell(y^*; y) = \frac{1}{2}(y^* - y)^2$$

 \blacktriangleright Cross-entropy loss, $0 \leq y \leq 1$ (Bernoulli), $y^* \in \{0,1\}$ or $\in [0;1]$

$$\ell(y^*; y) = -y^* \log y - (1 - y^*) \log(1 - y)$$

Regularized Risk Minimization

- Training set of examples $\mathcal{X} = \{(\mathbf{x}_t, y_t) : t = 1, \dots, T\}$
- Empirical risk

$$\mathcal{L}(\theta; \mathcal{X}) = \frac{1}{T} \sum_{t=1}^{T} \ell(y_t; \underbrace{y(\mathbf{x}_t; \theta)}_{\mathsf{NN output}}), \quad \theta = (\mathbf{W}^{(1)}, \dots, \mathbf{W}^{(L)})$$

▶ L_2 regularization or "weight decay" = favor smaller weights

$$\mathcal{L}_{\lambda}(\theta; \mathcal{X}) = \mathcal{L}(\theta; \mathcal{X}) + \frac{\lambda}{2} \|\theta\|_{2}^{2}$$

Modern variant: drop out (training with noise)

Section 2

Backpropagation

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ Ξ ♪ 9 Q ↔ 15/39

Stochastic Gradient Descent

- Optimize using gradient descent
 - Ioss function is typically non-convex: no/little theoretical guarantees
 - practice: just do it; saddle points more of an issue than poor local minima
- SGD (stochastic gradient descent)
 - steepest descent is too expensive for large data sets
 - SGD with step size η , pick data point t at random

$$\theta \leftarrow (1 - \eta \lambda)\theta - \eta \, \nabla_{\theta} \ell(y_t^*; y(\mathbf{x}_t; \theta))$$

Loss Gradients

- Large (many units) and deep (many layers) networks: many weights = partial derivative for each
 - sensitivity of output/loss with regard to each weight
- Use chain rule to compute derivatives
 - output layer = gradient of loss

$$abla_{\mathbf{y}}\,\ell = ...$$
 (depends on loss)

- start computation from output!
- example: squared loss

$$abla_y \ell = \frac{\partial \ell}{\partial y} = (y - y^*)$$

Layer-to-Layer Jacobian

How do units affect each other?

- x = previous layer activation
- x⁺ = next layer activation

► Jacobian matrix $\mathbf{J} = (J_{ij})$ of mapping $\mathbf{x} \to \mathbf{x}^+$, $\mathbf{x}_i^+ = \sigma(\mathbf{w}_i^\top \mathbf{x})$

$$\mathbf{J} = \frac{\partial \mathbf{x}^+}{\partial \mathbf{x}}, \quad J_{ij} = \frac{\partial x_i^+}{\partial x_j} = w_{ij} \cdot \sigma'(\mathbf{w}_i^\top \mathbf{x})$$

- (sometimes transposed definition of J in the literature)
- essentially a modified weight matrix!

Backpropagation

• Across multiple layers (by chain rule), $1 \le n < l$

$$\frac{\partial x_i^{(l)}}{\partial x_k^{(l-n)}} = \sum_j \underbrace{\frac{\partial x_i^{(l)}}{\partial x_j^{(l-1)}}}_{=J_{ij}^{(l)}} \frac{\partial x_j^{(l-1)}}{\partial x_k^{(l-n)}},$$

$$\frac{\partial \mathbf{x}^{(l)}}{\partial \mathbf{x}^{(l-n)}} = \mathbf{J}^{(l)} \cdot \frac{\partial \mathbf{x}^{(l-1)}}{\partial \mathbf{x}^{(l-n)}} = \mathbf{J}^{(l)} \cdot \mathbf{J}^{(l-1)} \cdots \mathbf{J}^{(l-n+1)}$$

one simply needs to multiply (layer-to-layer) Jacobians

... and then

$$\nabla_{\mathbf{x}^{(l)}}^{\top} \ell = \underbrace{\nabla_{\mathbf{y}}^{\top} \ell \cdot \mathbf{J}^{(L)} \cdots \mathbf{J}^{(l+1)}}_{\longrightarrow \text{ back propagation}}$$

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の Q ℃ 19/39

From Activities to Weights

- How do weights affect loss?
- Simple local computation

$$\frac{\partial \ell}{\partial w_{ij}^{(l)}} = \frac{\partial \ell}{\partial x_i^{(l)}} \frac{\partial x_i^{(l)}}{\partial w_{ij}^{(l)}}, \quad \text{where}$$

$$\frac{\partial x_i^{(l)}}{\partial w_{ij}^{(l)}} = \underbrace{\sigma'\left(\left[\mathbf{w}_i^{(l)}\right]^\top \mathbf{x}^{(l-1)}\right)}_{\substack{\text{sensitivity of} \\ \text{down-stream unit}}} \underbrace{x_j^{(l-1)}}_{\substack{\text{up-stream unit}}}$$

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ < ■ ♪ ○ ○ ○ 20/39

Section 3

Convolutional Neural Networks

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = りへで 21/39

No Free Lunch!

- ► No learning machine can do well on all problems.
- Need to constrain function class appropriately.

Neural Networks for Images: Receptive Fields

- Topological connectivity
 - encourage network to first extract localized features
 - subsequent layers: less and less localized features

Receptive field

- inputs that can affect a neuron (other weights = 0)
- small images patches as receptive fields
- can have multiple channels (in figure: 5)

<□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ≫ ○ 23/39

Neural Networks for Images: Translation Invariance

- Translation invariance of images
 - image patches look the same, irrespective of their location
 - idea: extract translation invariant features
 - what does that mean for a neural network?

Neural Networks for Images: Weight Sharing

Weight Sharing

- neurons share the same weights = compute same function
- differ in location of their receptive field = different input
- mirrors what has been done in image processing (manually)

Shift-invariant Filters

- layers learn shift-invariant filters
- weights define a filter mask (e.g. 3x3 or 5x5)
- typically as many neurons as inputs (border padding etc.)
 - e.g. 64x64 pixel per image \Rightarrow 64x64 neurons per channel

▶ color images: 3 color channels, 3-dimensional filter mask

CNN: Buildings blocks

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の Q ♀ 26/39

Three building blocks:

- Convolutional layer
- Pooling layer
- Fully-connected layer

Convolutional Layers

Convolution:

- Mathematical operation on two functions (f and g)
- It produces a third function that is typically viewed as a modified version of one of the original function
- This operation can be used to detect edges in an image

-1	-2	-1	
0	0	0	
-1	-2	-1	
V	ertica	al	

Convolutional Layers: Animation

cs231n.github.io/assets/conv-demo/index.html

Convolutional Layers: Mathematics

Convolution in 2D (5x5)

$$F_{n,m}(\mathbf{x};\mathbf{w}) = \sigma \left(b + \sum_{k=-2}^{2} \sum_{l=-2}^{2} w_{k,l} \cdot x_{n+k,m+l} \right)$$

< □ ▶ < @ ▶ < \ > ▲ \ > ↓ \ = りへで 29/39

- (n,m): center of receptive field
- x: image (2D pixel field)
- w: weights = arranged as a 2D mask
- related to convolution in mathematics

Pooling

- Reduce size of convolutional layers by down-sampling
- ► Take average over window (e.g. 2x2)
- Common practice: max pooling = take maximum in window

Fully-connected layer

- High-level reasoning
- Connects all neurons in the previous layer to every single neuron it has

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の Q ℃ 31/39

Can be computed with a matrix multiplication

LeNet5

- Architecture LeNet5
 - layers C1/S2: 6 channels, cutting at border, 2x subsampling (4704 neurons)
 - layers C3/S4: 16 channels, cutting at border, 2x subsampling (1600 neurons)

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の Q ♀ 32/39

- layers F5/F6: fully-connected
- output: Gaussian noise model (squared loss)

AlexNet

- AlexNet
 - Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton, 2012 ImageNet Classification with Deep Convolutional NN
 - 60 million parameters and 500,000 neurons
 - 5 convolutional layers, some followed by max-pooling
 - 2 globally connected layers with a final 1000-way softmax

Learning the Filters

Recall from last week: Optimize using stochastic gradient descent

$$\theta \leftarrow (1 - \eta \lambda)\theta - \eta \nabla_{\theta} L(y_t^*; y(\mathbf{x}_t; \theta))$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

What do the filters look like then?

Learning Local Image Features

- Example: filters learned at first layer
- cf. Krizhevsky et al.: 96 filters of size 11x11x3

Learning Higher Level Features

 (c) Andrew Ng, trained on face images

Saliency Maps

Per-class saliency maps for a CNN trained for visual classification (cf. Simonyan et al, 2015)

dumbbell

cup

dalmatian

bell pepper

husky

Deeper Nets

- ImageNet 2015 (Dec):
 - winner: residual networks
 - more than 100 layers deep

Semantic Segmentation

- CNNs can also be used for semantic segmentation.
- Typical architecture of a de-convolutional network (from Noh et al. 2015)

<ロト < 回 ト < 三 ト < 三 ト 三 の へ で 39/39