Computational Intelligence Laboratory

Lecture 7
Neural Networks

Thomas Hofmann

ETH Zurich — cil.inf.ethz.ch

03 April 2020

cil.inf.ethz.ch

Section 1

Multilayer Perceptrons

Neural Networks

» Neural network: consist of simple, parametrized computational
elements = neurons or units

» Basic operation:
» each unit implements a generalized linear function: R” — R
> linear + non-linear activation function 0 : R - R

» parametrized with weights w € R**+1

foxsw) =0 (wo + z”: wm) © o(w'x)

i=1

» (*) will ignore/absorb bias parameter wy for clarity

Neuron: Schematic View

input
variables

X1 variable

weights

X2

neuron j

activation
function

eg: RelU, sigmoid

output
Yj

Activation Functions

» Old school: logistic
(or tanh) function

» New school: ReLU
(rectified linear unit)

» linear function over half-space
H={x:w'x>0}

» zero on complement H¢ =R" —H

» non-smooth, but simple derivative
over R — {0} I

Multilayer Perceptron

» Arrange such neurons in a layer (here: hidden layer)
» Input layer = raw input x, no computation

» Output layer = final output, class label, response variables

input hidden output
layer layer layer

Units and Layers

» Units are arranged in layers

> units indexed by j

» mapping between layers: vector-valued

» shared choice of o

F7:R" - R™, F{(x)= o(w,x),

transfer fct.
of j-th unit

» Matrix-vector notation (o applied elementwise)

F'(x;W)=0(Wx), W=

j=1,...

-
Wi

T
Wm

Units and Layers

» Sometimes we want to index layers by [

» Activation vector of [-th layer: x()

» x(M s input; x(P) is output; x((1 < 1 < L) hidden layers

» indexed notation for layer-to-layer forward propagation

<O = gO (me(z—l))

Units and Layers

» L-layer network: nested function
y = oD <W<L>U<Lfl> (. (Uu) (W(l)x> .)))

» Layer width = “more of the same” features

» Network depth = “more compositionality”, feature hierarchy
(= deep learning)

Output Layer

Shortcuts W = W) | x = x(L=1)

\4

> Linear regression: linear activation

y = Wx

v

Binary classification (one output): logistic

1
1+ exp[—w'x]

y=PY =1[x) =

Multiclass with K classes: soft-max

v

exp [WTX]

yp = PY =k[x) =

k
K
Zj:1 exp |:W;|—X]

MLP Classification vs. Logistic Regression

» Logistic regression: computes linear function of inputs

1
1+ exp[—(w,x)]

P(Y = 1[x) =

» Multilayer Perceptron

» learn intermediate feature representation

» perform logistic regression on learned representation x(£—1)

Learning in Massively Parametrized Models :)

» Learning = automatically fiddling with network weights

Loss Function

v

How do we adjust, i.e. learn the weights?

v

First: define a loss function
> target output y*, prediction y

» loss function £(y*;y)

v

Squared loss, y*,y € R

Uy*sy) = %(y* —y)°

v

Cross-entropy loss, 0 < y < 1 (Bernoulli), y* € {0,1} or € [0;1]

(y*sy) = —y"logy — (1 —y*)log(1 —y)

Regularized Risk Minimization

» Training set of examples X' = {(x¢,y) :t =1,...,T}

» Empirical risk

T
LS Uy ylxis0)), 6= (WO, W)
Tt 1 ——
NN output

» Lo regularization or “weight decay” = favor smaller weights

A
La(0;X) = L(0;X) + S (1013

» Modern variant: drop out (training with noise)

Section 2

Backpropagation

Stochastic Gradient Descent

» Optimize using gradient descent

» loss function is typically non-convex: no/little theoretical guarantees

> practice: just do it; saddle points more of an issue than poor local
minima
» SGD (stochastic gradient descent)

> steepest descent is too expensive for large data sets

» SGD with step size 7, pick data point ¢ at random

0 < (1 =0\ —nVoll(y;y(xs;0))

Loss Gradients

» Large (many units) and deep (many layers) networks:
many weights = partial derivative for each

» sensitivity of output/loss with regard to each weight

» Use chain rule to compute derivatives

» output layer = gradient of loss
Vy ¢ =... (depends on loss)

» start computation from output!

» example: squared loss

or .
Vyf—@—(y—y)

Layer-to-Layer Jacobian

» How do units affect each other?

» x = previous layer activation

» xT = next layer activation

» Jacobian matrix J = (J;;) of mapping x — x*, x;” = o(w
oxt ozt
J=——, Jij =+ = w ol (w] x)
ox Ox; !

> (sometimes transposed definition of J in the literature)

> essentially a modified weight matrix!

Backpropagation

» Across multiple layers (by chain rule), 1 <n <

(‘hz(l) 8$l(l) 8$j(l_1)
D (1) - Z 0z; =1 gy i=m)”
——

=J;; (O

J

8x(l) _ J(l)) 6x(l71)
8X(lfn) 8X(l7n)

—J0 . g1 yl-n+1)

» one simply needs to multiply (layer-to-layer) Jacobians

» ... and then

VIU)E = V;f i (SO (GaY)

— back propagation

From Activities to Weights

» How do weights affect loss?

» Simple local computation

o _ ot ox
oy @~ 02,0 g0

;D , T
i W] U1 (1-1)
owy® ~° Gwz])) A

—~~ activation of
sensitivity of up-stream unit
down-stream unit

Section 3

Convolutional Neural Networks

No Free Lunch!

» No learning machine can do well on all problems.

» Need to constrain function class appropriately.

“there’s
no such thing
as a free
lunch.”

Neural Networks for Images: Receptive Fields

» Topological connectivity
» encourage network to first extract localized features

» subsequent layers: less and less localized features

» Receptive field

> inputs that can affect a neuron
(other weights = 0)

» small images patches as receptive
fields

» can have multiple channels (in

000

[

figure: 5)

lance

ion Invari

Translat

irrespective of their location

idea: extract translation invariant features

» what does that mean for a neural network?

> image patches look the same

» Translation invariance of images
>

Neural Networks for Images

DA 24/39

’
»
&

LRk ks (3
s
K N
tted

Neural Networks for Images: Weight Sharing

» Weight Sharing

> neurons share the same weights = compute same function
» differ in location of their receptive field = different input
» mirrors what has been done in image processing (manually)

» Shift-invariant Filters

> layers learn shift-invariant filters

> weights define a filter mask (e.g. 3x3 or 5x5)

» typically as many neurons as inputs (border padding etc.)
> e.g. 64x64 pixel per image = 64x64 neurons per channel

» color images: 3 color channels, 3-dimensional filter mask

CNN: Buildings blocks

Input layer (1) 4 feature maps.

(C1) 4 feature maps (sz)smam maps (C2) 6 foature maps

e %

l convolution layer | subsamplnglyer | convolution layer | sub-sampling lsyer | fully connece ed MLP

» Three building blocks:
» Convolutional layer
» Pooling layer
» Fully-connected layer

Convolutional Layers

» Convolution:
» Mathematical operation on two functions (f and g)
» It produces a third function that is typically viewed as a modified
version of one of the original function
» This operation can be used to detect edges in an image

-1 o 1 -1 2| -1

2| 0] 2 o]0 (1]

-1 o 1 -1 -2] -1

Horizontal Vertical

Convolutional Layers: Animation

Input Volume (+pad 1) (7x7x3) Filter WO (3x3x3) Filter W1 (3x3x3) Output Volume (3x3x2)
x[:,:,0] w0[:,:,0] wif:,:,0 of[:,:,0]
00 0O0O0O0TO 1 -1 -1 11 SN 28 (0]
02002 10 1 1|1 o 00 4
0010 20 20 2
0110 1 o[:,:,1]
0 0 [1}2(2]0 28 158 [0
o 2 [Tz [T]o ol e
0 o [o]odo]o g
x[:,2,1] L:r2.2 WLl s7
0000000 o 9 il 2

00 2 00 v o At
00212730 1 (v AR

S O Y Bjj (1x1x1) Bias b¥(1x1x1)

0 2 |01 f1]2 t,:,0] blf:,:,0]

0o o [2]1]240 o

0 0 [ojfd o 0

000000

0010 110

022 20 2 0

00 172 1 0

0 0 |22(141 O

0o o [27]241]o

00 0 Jfo 0

cs231n.github.io/assets/conv-demo/index.html

cs231n.github.io/assets/conv-demo/index.html

Convolutional Layers: Mathematics

» Convolution in 2D (5x5)

2 2
me(x; W) =0 (b + Z Z Wg,1 - a:n+k’m+l>

k=—21=—2

v

(n,m): center of receptive field

v

x: image (2D pixel field)
» w: weights = arranged as a 2D mask

related to convolution in mathematics

v

Pooling

» Reduce size of convolutional layers by down-sampling

» Take average over window (e.g. 2x2)

» Common practice: max pooling = take maximum in window

12

20

30

12

34

70

37

112

100|

25

12

max pooling
20|30
112| 37

average pooling

13| 8
79|20

Fully-connected layer

» High-level reasoning
» Connects all neurons in the previous layer to every single neuron it
has

» Can be computed with a matrix multiplication

LeNetb

C3:1. maps 16@10x10
541

INPUT

C1: feature maps
32:a2 b@26:28

S2:f. maps
B@14x14

|
Ful\cmr#em.ian | Gaussian connections
npling Corvolutions Subsampling Full connection

Convalutions

> Architecture LeNetb
> layers C1/S2: 6 channels, cutting at border, 2x subsampling (4704
neurons)

» layers C3/S4: 16 channels, cutting at border, 2x subsampling (1600
neurons)

> layers F5/F6: fully-connected
» output: Gaussian noise model (squared loss)

AlexNet

s
8 2048 2038 \dense
13
T |
13 dense dense]|
1600
128 Max i
Max 8 Max pooling 2 048
pooling pooling

> AlexNet
» Alex Krizhevsky, llya Sutskever, Geoffrey E. Hinton, 2012
ImageNet Classification with Deep Convolutional NN
» 60 million parameters and 500,000 neurons
» 5 convolutional layers, some followed by max-pooling

> 2 globally connected layers with a final 1000-way softmax

Learning the Filters

» Recall from last week: Optimize using stochastic gradient descent
0« (1 =nA)0 —nVoL(y;;y(xs;0))

» What do the filters look like then?

Learning Local Image Features

» Example: filters learned at first layer
» cf. Krizhevsky et al.: 96 filters of size 11x11x3

Learning Higher Level Features

FACIAL RECOGNITION

Deep-learning neural networks use layers of increasingly
complex rules to categorize complicated shapes such as faces.

Layer 1: The
computer
identifies pixels
of light and dark.

Layer 2: The
computer learns to
identify edges and
simple shapes.

(c) Andrew Ng,
trained on face images

Layer 3: The computer
learns to identify more
complex shapes and
objects.

Layer 4: The computer
learns which shapes

and objects can be used
to define a human face.

Saliency Maps

Per-class saliency maps for a CNN trained for visual classification
(cf. Simonyan et al, 2015)

.. .
1

dumbbell

dalmatian
bell pepper

lemon

DA 37/39

Deeper Nets

» ImageNet 2015 (Dec):

» winner: residual networks
» more than 100 layers deep

X
identity

20

ResNet-20

ResNet-32
~ResNct-44
~—ResNet-56
—ResNet-110

20-layer

Semantic Segmentation

» CNNs can also be used for semantic segmentation.

» Typical architecture of a de-convolutional network (from Noh et
al. 2015)

	Multilayer Perceptrons
	Backpropagation
	Convolutional Neural Networks

