
Computational Intelligence Laboratory

Lecture 7

Neural Networks

Thomas Hofmann

ETH Zurich – cil.inf.ethz.ch

03 April 2020

1/39

cil.inf.ethz.ch


2/39

Section 1

Multilayer Perceptrons



3/39

Neural Networks

I Neural network: consist of simple, parametrized computational
elements = neurons or units

I Basic operation:

I each unit implements a generalized linear function: Rn → R
I linear + non-linear activation function σ : R→ R
I parametrized with weights w ∈ Rn+1

fσ(x;w) := σ

(
w0 +

n∑
i=1

wixi

)
(∗)
= σ(w>x)

I (*) will ignore/absorb bias parameter w0 for clarity



4/39

Neuron: Schematic View



5/39

Activation Functions

I Old school: logistic
(or tanh) function

I New school: ReLU
(rectified linear unit)

I linear function over half-space
H = {x : w>x > 0}

I zero on complement Hc = Rn−H
I non-smooth, but simple derivative

over R− {0}



6/39

Multilayer Perceptron

I Arrange such neurons in a layer (here: hidden layer)

I Input layer = raw input x, no computation

I Output layer = final output, class label, response variables



7/39

Units and Layers

I Units are arranged in layers

I units indexed by j

I mapping between layers: vector-valued

I shared choice of σ

F σ : Rn → Rm, F σj (x) = σ(w>j x)︸ ︷︷ ︸
transfer fct.
of j-th unit

, j = 1, . . . ,m

I Matrix-vector notation (σ applied elementwise)

F σ(x;W) = σ (Wx) , W =

w>1
. . .
w>m





8/39

Units and Layers

I Sometimes we want to index layers by l

I Activation vector of l-th layer: x(l)

I x(1) is input; x(L) is output; x(l) (1 < l < L) hidden layers

I indexed notation for layer-to-layer forward propagation

x(l) = σ(l)
(
W(l)x(l−1)

)



9/39

Units and Layers

I L-layer network: nested function

y = σ(L)
(
W(L)σ(L−1)

(
· · ·
(
σ(1)

(
W(1)x

)
· · ·
)))

I Layer width = “more of the same” features

I Network depth = “more compositionality”, feature hierarchy
(= deep learning)



10/39

Output Layer

I Shortcuts W = W(L), x = x(L−1)

I Linear regression: linear activation

y = Wx

I Binary classification (one output): logistic

y1 = P (Y = 1 |x) = 1

1 + exp [−w>x]

I Multiclass with K classes: soft-max

yk = P (Y = k |x) =
exp

[
w>k x

]∑K
j=1 exp

[
w>j x

]



11/39

MLP Classification vs. Logistic Regression

I Logistic regression: computes linear function of inputs

P (Y = 1|x) = 1

1 + exp [−〈w,x〉]

I Multilayer Perceptron

I learn intermediate feature representation

I perform logistic regression on learned representation x(L−1)



12/39

Learning in Massively Parametrized Models :)

I Learning = automatically fiddling with network weights



13/39

Loss Function

I How do we adjust, i.e. learn the weights?

I First: define a loss function

I target output y∗, prediction y

I loss function `(y∗; y)

I Squared loss, y∗, y ∈ R

`(y∗; y) =
1

2
(y∗ − y)2

I Cross-entropy loss, 0 ≤ y ≤ 1 (Bernoulli), y∗ ∈ {0, 1} or ∈ [0; 1]

`(y∗; y) = −y∗ log y − (1− y∗) log(1− y)



14/39

Regularized Risk Minimization

I Training set of examples X = {(xt, yt) : t = 1, . . . , T}

I Empirical risk

L(θ;X ) = 1

T

T∑
t=1

`(yt; y(xt; θ)︸ ︷︷ ︸
NN output

), θ = (W(1), . . . ,W(L))

I L2 regularization or “weight decay” = favor smaller weights

Lλ(θ;X ) = L(θ;X ) +
λ

2
‖θ‖22

I Modern variant: drop out (training with noise)



15/39

Section 2

Backpropagation



16/39

Stochastic Gradient Descent

I Optimize using gradient descent

I loss function is typically non-convex: no/little theoretical guarantees

I practice: just do it; saddle points more of an issue than poor local
minima

I SGD (stochastic gradient descent)

I steepest descent is too expensive for large data sets

I SGD with step size η, pick data point t at random

θ ← (1− ηλ)θ − η∇θ`(y∗t ; y(xt; θ))



17/39

Loss Gradients

I Large (many units) and deep (many layers) networks:
many weights = partial derivative for each

I sensitivity of output/loss with regard to each weight

I Use chain rule to compute derivatives

I output layer = gradient of loss

∇y ` = ... (depends on loss)

I start computation from output!

I example: squared loss

∇y` =
∂`

∂y
= (y − y∗)



18/39

Layer-to-Layer Jacobian

I How do units affect each other?

I x = previous layer activation

I x+ = next layer activation

I Jacobian matrix J = (Jij) of mapping x→ x+, x+
i = σ(w>i x)

J =
∂x+

∂x
, Jij =

∂x+i
∂xj

= wij · σ′(w>i x)

I (sometimes transposed definition of J in the literature)

I essentially a modified weight matrix!



19/39

Backpropagation

I Across multiple layers (by chain rule), 1 ≤ n < l

∂xi
(l)

∂xk(l−n)
=
∑
j

∂xi
(l)

∂xj(l−1)︸ ︷︷ ︸
=Jij(l)

∂xj
(l−1)

∂xk(l−n)
,

∂x(l)

∂x(l−n) = J(l) · ∂x
(l−1)

∂x(l−n) = J(l) · J(l−1) · · ·J(l−n+1)

I one simply needs to multiply (layer-to-layer) Jacobians

I ... and then

∇>x(l)` = ∇>y ` · J(L) · · ·J(l+1)︸ ︷︷ ︸
−→ back propagation



20/39

From Activities to Weights

I How do weights affect loss?

I Simple local computation

∂`

∂wij(l)
=

∂`

∂xi(l)
∂xi

(l)

∂wij(l)
, where

∂xi
(l)

∂wij(l)
= σ′

([
wi

(l)
]>

x(l−1)
)

︸ ︷︷ ︸
sensitivity of

down-stream unit

xj
(l−1)︸ ︷︷ ︸

activation of
up-stream unit



21/39

Section 3

Convolutional Neural Networks



22/39

No Free Lunch!

I No learning machine can do well on all problems.

I Need to constrain function class appropriately.



23/39

Neural Networks for Images: Receptive Fields

I Topological connectivity

I encourage network to first extract localized features

I subsequent layers: less and less localized features

I Receptive field

I inputs that can affect a neuron
(other weights = 0)

I small images patches as receptive
fields

I can have multiple channels (in
figure: 5)



24/39

Neural Networks for Images: Translation Invariance

I Translation invariance of images

I image patches look the same, irrespective of their location

I idea: extract translation invariant features

I what does that mean for a neural network?



25/39

Neural Networks for Images: Weight Sharing

I Weight Sharing

I neurons share the same weights = compute same function

I differ in location of their receptive field = different input

I mirrors what has been done in image processing (manually)

I Shift-invariant Filters

I layers learn shift-invariant filters

I weights define a filter mask (e.g. 3x3 or 5x5)
I typically as many neurons as inputs (border padding etc.)

I e.g. 64x64 pixel per image ⇒ 64x64 neurons per channel

I color images: 3 color channels, 3-dimensional filter mask



26/39

CNN: Buildings blocks

I Three building blocks:
I Convolutional layer
I Pooling layer
I Fully-connected layer



27/39

Convolutional Layers

I Convolution:
I Mathematical operation on two functions (f and g)
I It produces a third function that is typically viewed as a modified

version of one of the original function
I This operation can be used to detect edges in an image



28/39

Convolutional Layers: Animation

cs231n.github.io/assets/conv-demo/index.html

cs231n.github.io/assets/conv-demo/index.html


29/39

Convolutional Layers: Mathematics

I Convolution in 2D (5x5)

Fn,m(x;w) = σ

(
b+

2∑
k=−2

2∑
l=−2

wk,l · xn+k,m+l

)

I (n,m): center of receptive field

I x: image (2D pixel field)

I w: weights = arranged as a 2D mask

I related to convolution in mathematics



30/39

Pooling

I Reduce size of convolutional layers by down-sampling

I Take average over window (e.g. 2x2)

I Common practice: max pooling = take maximum in window



31/39

Fully-connected layer

I High-level reasoning

I Connects all neurons in the previous layer to every single neuron it
has

I Can be computed with a matrix multiplication



32/39

LeNet5

I Architecture LeNet5

I layers C1/S2: 6 channels, cutting at border, 2x subsampling (4704
neurons)

I layers C3/S4: 16 channels, cutting at border, 2x subsampling (1600
neurons)

I layers F5/F6: fully-connected

I output: Gaussian noise model (squared loss)



33/39

AlexNet

I AlexNet

I Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton, 2012
ImageNet Classification with Deep Convolutional NN

I 60 million parameters and 500,000 neurons

I 5 convolutional layers, some followed by max-pooling

I 2 globally connected layers with a final 1000-way softmax



34/39

Learning the Filters

I Recall from last week: Optimize using stochastic gradient descent

θ ← (1− ηλ)θ − η∇θL(y∗t ; y(xt; θ))

I What do the filters look like then?



35/39

Learning Local Image Features

I Example: filters learned at first layer

I cf. Krizhevsky et al.: 96 filters of size 11x11x3



36/39

Learning Higher Level Features

I (c) Andrew Ng,
trained on face images



37/39

Saliency Maps

Per-class saliency maps for a CNN trained for visual classification
(cf. Simonyan et al, 2015)



38/39

Deeper Nets

I ImageNet 2015 (Dec):
I winner: residual networks

I more than 100 layers deep



39/39

Semantic Segmentation

I CNNs can also be used for semantic segmentation.

I Typical architecture of a de-convolutional network (from Noh et
al. 2015)


	Multilayer Perceptrons
	Backpropagation
	Convolutional Neural Networks

