
Computational Intelligence Laboratory

Lecture 8

Generative Models

Thomas Hofmann

ETH Zurich – cil.inf.ethz.ch

24 April 2020

1/28

cil.inf.ethz.ch

2/28

Section 1

Motivation

3/28

Faces

What have all these faces in common?

They are not faces of real people, but generated.
(taken from StyleGAN (NVIDIA), March 2020)

https://github.com/NVlabs/stylegan

3/28

Faces

What have all these faces in common?

They are not faces of real people, but generated.
(taken from StyleGAN (NVIDIA), March 2020)

https://github.com/NVlabs/stylegan

4/28

Voices
What is special about his voice?
News reading

It is a computer voice (Amazon Alexa).

27.696

t.mp3
Media File (audio/x-mp3)

4/28

Voices
What is special about his voice?
News reading

It is a computer voice (Amazon Alexa).

27.696

t.mp3
Media File (audio/x-mp3)

5/28

Synthesis vs. Analysis

Using Synthesis (or generation)

... rather than Analysis (or recognition)

... opens up vastly new possibilities for machine learning

... animation, games, movies, art, mixed reality

6/28

Section 2

Variational Autoencoders

7/28

Deep Generative Models

Key idea: use power of DNNs to create complex distributions

I Sample (simple) random vector, e.g. Rm 3 z ∼ N (0, I)

I N (0, I) = standard normal distribution in m dimensions

I Transform through a (deterministic) deep network Fθ : Rm → Rn

I Induces a (possibly complex) distribution over Rn w/ parameters θ

I sample x by sampling z and setting x = Fθ(z)

I expectations Ex[f(x)] = Ez [f(Fθ(z))]

= law of the unconscious statistician

Can this be made to work?

8/28

Deep Generative Models

I If F is invertible: density is given by change of variables formula

x = Fθ(z), px(x)︸ ︷︷ ︸
x-density

=

∣∣∣∣∣∂F−1
θ (x)

∂x

∣∣∣∣∣ pz(F−1
θ (x))︸ ︷︷ ︸

z-density

I would require network inversion to find pre-image z 7→ Fθ(z)
!
= x

I would require computation of (inverse) Jacobian determinant

I would also need to compute gradients with respect to θ to learn

I often impossible (non-invertible), intractable/impratical
(dimensionality) =⇒ often not viable to construct density

9/28

ELBO: Evidence Lower BOund

I Slightly more general: pθ(x|z) (instead of determinsitic Fθ)

I Marginal likelihood pθ(x) =
∫
pθ(x|z)p(z)dz

I Variational lower bound

log pθ(x) ≥ ELBO(φ, θ) = Eqφ

[
log pθ(x|z) + log

p(z)

qφ(z|x)

]
= Eqφ [log pθ(x|z)]− KL(qφ(z|x)||p(z))

I KL = Kullback-Leibler divergence

I maximize w.r.t. θ (generative model, given qφ)

I maximize w.r.t. φ (inference model, given pθ)

10/28

Variational Autoencoder: Diagram

(courtesy of Teh, NIPS 2017)

11/28

ELBO: Generative Model Updates

I Update step for generative model, stochastic approximation

∇θ Eqφ [log pθ(x|z)] = Eqφ [∇θ log pθ(x|z)] (Leibniz integral rule)

≈ 1

L

L∑
r=1

∇θ log pθ(x|z(r)), z(r) iid∼ qφ(·|x)

I unbiased gradient estimate (SGD)

I similar to supervised learning (input z, output x)

I Gaussian observation model ≡ squared error 1
2 (F (z)− x)2

I inference model performs approximate model inversion

12/28

ELBO: Inference Model Updates (1 of 2)

I Update step for inference model:

∇φ Eqφ [L(x, z)] =

∫
L(x, z)∇φ qφ(z;x)dz = E[?]

I Reinforce trick (Williams 1992)

∇φ Eqφ [L(x, z)] = Eqφ [L(x, z)∇φ log qφ(z;x)]

I as ∇q = q∇ log q

I can be estimated via sampling, but ...

I variance usually very high =⇒ impractically large number of
samples

13/28

ELBO: Inference Model Updates (2 of 2)

I Re-parameterization trick: use variational distributions such that

qφ(z;x) = gφ(ζ;x), ζ ∼ simple distribution (e.g. N (0, I))

I Gradient of expectation can be converted into expectation of
gradient (stochastic backpropagation)

∇φ Eqφ [L(x, z)] = Eζ [∇φ L(x, gφ(ζ))]

≈ 1

L

L∑
r=1

[
∇φ L(x, gφ(ζ(r)))

]
, ζ(r) iid∼ simple

I Example:

ζ ∼ N (0, I), z = µ+ Uζ, then z ∼ N (µ,UU>)

I (It is often observed that this leads to lower variance estimates.)

14/28

Deep Latent Gaussian Models: Generative Model

I Noise variables

zl
iid∼ N (0, I), l = 1, . . . , L

I Hidden activities (latent random variables, top-down indexed)

xL = WLzL, xl = F l(xl+1)︸ ︷︷ ︸
deterministic

+ Wlzl︸ ︷︷ ︸
stochastic

I Hidden layer (conditional) distribution

xl|xl+1 ∼ N
(
F l(xl+1),WlWl>

)
I Generated pattern x ∼ π(x1) (observation/noise model with

parameters x1)

15/28

Deep Latent Gaussian Models: Inference Model

I Inference model (amortized inference), z = (z1, . . . , zL)

qφ(z;x) =

L∏
l=1

N (zl|µl(x),C(x)), C(x) = U(x)U(x)>

where µ and U are represented by DNNs with input x.

I Update equations can use the Bonnet formula (for z ∼ N (µ,C)):

∇µE[f(z)] = E[∇zf(z)]

I Similar equation for U (as an alternative to Price’s theorem)
Rezende et al. 2014: Gaussian backpropagation

∇UEz[f(z)] = ∇UEζ [f(Uζ + µ)] = Eζ [ζ
>g], g := ∇ξf(ξ)|ξ=Uζ+µ

16/28

Variational Autoencoder: Learning Scheme

(from Rezende at al. 2014; Notation: U = C)

17/28

VAE: Examples

I Face generation

from http://torch.ch/blog/2015/11/13/gan.html

I not bad, but blurry

I (often) better training: Generative Adverserial Networks (GANs)

http://torch.ch/blog/2015/11/13/gan.html

18/28

VAE: Examples

I Face reconstruction/denoising

from http://torch.ch/blog/2015/11/13/gan.html

http://torch.ch/blog/2015/11/13/gan.html

19/28

Section 3

Generative Adversarial Network

20/28

From Optimal Discrimination to Generation

I Proposed by Goodfellow et al., 2014

I Classification problem: distinguish between data & model.
Define joint distribution as mixture

p̃θ(x, y = 1) = 1
2p(x), p̃θ(x, y = 0) = 1

2pθ(x) .

I Bayes optimal classifier: posterior

qθ = p/(p+ pθ) .

I Train generator via minimizing the logistic likelihood

θ
min−→ `∗(θ) := Ep̃θ [y ln qθ(x) + (1− y) ln(1− qθ(x))]

I generator’s goal: generate samples that are indistinguishable from
real data, even for the best possible classifier

I can be shown to be equivalent to Jensen-Shannon divergence:
`∗(θ) = JS(p, pθ)− ln 2

21/28

From Real Discriminaton to Generation

I Optimal classifier is in general inaccessible

I Instead: define a classification model

qφ : x 7→ [0; 1], φ ∈ Φ

I Define objective via bound

`∗(θ) ≥ sup
φ∈Φ

`(θ, φ)

`(θ, φ) := Ep̃θ [y ln qφ(x) + (1− y) ln(1− qφ(x))]

I find best classifier within restricted family

I typically: Φ = weight space of DNN

I training objective for generator is defined implicitly over sup

22/28

Optimizing GANs

I Saddle-point problem

θ∗ := arg min
θ∈Θ

{sup
φ∈Φ

`(θ, φ)}

I explicitly performing inner sup is impractical

I various methods from optimization / solving games

I SGD as a heuristic (may diverge!)

θt+1 = θt − η∇θ`(θt, φt)

φt+1 = φ+ η∇φ`(θt+1, φt)

I Ongoing research: find better optimization methods

23/28

Section 4

Autoregressive Models

24/28

Approaches to Learn a Generative Model

I Variational Autoencoders (VAEs), Generative Adversarial Networks
(GANs): complicated learning method; not always successful

I Simpler strategy: Autoregressive models - generate output one
variable at a time

I justified by chain rule: p(x1, . . . , xm) =
∏m
t=1 p(xt|x1:t−1)

I Example: PixelCNN (A. van den Oord et al. 2016)

I generative model for images

I network models conditional distribution of every individual pixel
given previous pixels (to the left and to the top).

I Similar approaches used for speech (e.g. WaveNet)

25/28

Pixel CNN

I Model joint distribution of pixels over
image x as product of conditional
distributions, where xi is a single pixel:

p(x) =

n2∏
i=1

p(xi|x1, ..., xi−1)

I Visualization on the left: generate pixel xi
by conditioning on previously generated
pixels x1, . . . xi−1

I Ordering of the pixel dependencies is in
raster scan order: row by row and pixel by
pixel within every row

0 255

26/28

Pixel CNN

I Need to make sure the CNN can only use information about pixels
above and to the left of the current pixel

I Used to mask the 5x5 filters to make sure the model cannot read
pixels below (or strictly to the right) of the current pixel to make
its predictions

1 1 1 1 1

1 1 1 1 1

1 1 0 0 0

0 0 0

0 0 0

0

0

0

0

27/28

Prediction with Pixel CNN

I During sampling the predictions are sequential: every time a pixel
is predicted, it is fed back into the network to predict the next pixel

I Drawback: Slow process

28/28

Image Generation with Pixel CNN

African elephant

Coral Reef

	Motivation
	Variational Autoencoders
	Generative Adversarial Network
	Autoregressive Models

