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Section 1

Motivation



Faces

What have all these faces in common?



https://github.com/NVlabs/stylegan

Faces

What have all these faces in common?

They are not faces of real people, but generated.
(taken from StyleGAN (NVIDIA), March 2020)


https://github.com/NVlabs/stylegan

Voices
What is special about his voice?
News reading



27.696

t.mp3
Media File (audio/x-mp3)


Voices

What is special about his voice?
News reading

It is a computer voice (Amazon Alexa).

Alexa's news-reading voice just got a lot more
professional

Alexa now knows which words to emphasize in a sentence
By Jon Porter | @JonPorty | Jan 16, 2019, 11:29am EST

TECH \ AMAZON ARTIFICIAL INTELLIGENCE

Amazon's Alexa gets a new
longform speaking style

With more natural-sounding pauses, the style is intended for
longer-form content like podcasts

By Kim Lyons | Apr 16, 2020, 5:45pm EDT
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Synthesis vs. Analysis

Using Synthesis (or generation)
. rather than Analysis (or recognition)
. opens up vastly new possibilities for machine learning

. animation, games, movies, art, mixed reality



Section 2

Variational Autoencoders



Deep Generative Models
Key idea: use power of DNNs to create complex distributions

» Sample (simple) random vector, e.g. R™ 3 z ~ N (0,1)
» N(0,I) = standard normal distribution in m dimensions
» Transform through a (deterministic) deep network Fp : R™ — R”"

» Induces a (possibly complex) distribution over R™ w/ parameters 6

» sample x by sampling z and setting x = Fy(z)

» expectations Ex[f(x)] = E, [f(Fy(z))]

= law of the unconscious statistician

Can this be made to work?



Deep Generative Models

» If F'is invertible: density is given by change of variables formula

OF(x) B
x=Fy(z), palx) = | =52 (B ()
~—~— X S—
x-density z-density

. . !
» would require network inversion to find pre-image z — Fy(z) = x
» would require computation of (inverse) Jacobian determinant
» would also need to compute gradients with respect to 6 to learn

» often impossible (non-invertible), intractable/impratical
(dimensionality) = often not viable to construct density



ELBO: Evidence Lower BOund

» Slightly more general: py(x|z) (instead of determinsitic Fy)
» Marginal likelihood py(x) = [ py(x|z)p(z)dz

» Variational lower bound

log ps(x) > ELBO(6,0) = By, |log py(x]z) + log 22
2o(2%)

— By, llog po(x|2)] — KL(gs(zl)]Ip(2))

» KL = Kullback-Leibler divergence
» maximize w.r.t. § (generative model, given ¢,)

» maximize w.r.t. ¢ (inference model, given py)



Variational Autoencoder: Diagram
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(courtesy of Teh, NIPS 2017)



ELBO: Generative Model Updates

» Update step for generative model, stochastic approximation

Vo Ey, [log pg(x|z)] = Ey, [Ve logpe(x|z)] (Leibniz integral rule)
L

1 jid
~ = >V logm(xla®), 2 ¥ gy(x)
r=1
» unbiased gradient estimate (SGD)
» similar to supervised learning (input z, output x)
» Gaussian observation model = squared error 1(F(z) — x)?

» inference model performs approximate model inversion



ELBO: Inference Model Updates (1 of 2)

» Update step for inference model:
Vg Eq, [L(x,2z)] = /E(x,z) Voaqe(z;x)dz = E[ 7 |
» Reinforce trick (Williams 1992)
Vo By, [L(x,2)] = Ey, [L(x,2)V 4 log q4(2; %))

» as Vg =¢Vloggq
> can be estimated via sampling, but ...

» variance usually very high = impractically large number of
samples



ELBO: Inference Model Updates (2 of 2)

» Re-parameterization trick: use variational distributions such that
4o(2;%) = g4(¢;x), ¢ ~ simple distribution (e.g. N(0,1))

» Gradient of expectation can be converted into expectation of
gradient (stochastic backpropagation)

Vg Eq, [L(x,2)] = E¢ [V L(x, 95(C))]

1
L

Q

Z [V¢ L(x,94(¢)], ¢ % simple

r=1

» Example:
¢ ~N(0,1), z=p+UCthen z~ N(p, UUT)

» (It is often observed that this leads to lower variance estimates. )



Deep Latent Gaussian Models: Generative Model

Noise variables

v

2 % NI, 1=1,...,L

v

Hidden activities (latent random variables, top-down indexed)

XL :WLZL, Xl — FZ(XH—I) + lel
——

deterministic ~ Stochastic

v

Hidden layer (conditional) distribution

x![x*1 ~ N (Fl(x”l),WlWlT)

v

Generated pattern x ~ 7(x!) (observation/noise model with
parameters x!)



Deep Latent Gaussian Models: Inference Model

> Inference model (amortized inference), z = (z,...,z%)
L
gp(z:x) = [ [N (21 (x), C(x)), C(x) =U(x)U(x)"
=1

where 1 and U are represented by DNNs with input x.
» Update equations can use the Bonnet formula (for z ~ N(u, C)):
V.E[f(2)] = E[V.f(2)]

» Similar equation for U (as an alternative to Price’s theorem)
Rezende et al. 2014: Gaussian backpropagation

VuE,[f(z)] = VUE[f(UC+p)] = EBc[CTgl, 8= Vef(&)ecucin



Variational Autoencoder: Learning Scheme
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(from Rezende at al. 2014; Notation: U = C)
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VAE: Examples

» Face generation

from http://torch.ch/blog/2015/11/13/gan.html

» not bad, but blurry

» (often) better training: Generative Adverserial Networks (GANs)


http://torch.ch/blog/2015/11/13/gan.html

VAE: Examples

» Face reconstruction/denoising

Input VAE reconstruction

from http://torch.ch/blog/2015/11/13/gan.html


http://torch.ch/blog/2015/11/13/gan.html

Section 3

Generative Adversarial Network



From Optimal Discrimination to Generation

» Proposed by Goodfellow et al., 2014

» Classification problem: distinguish between data & model.
Define joint distribution as mixture

po(x,y=1) = 4p(x), Po(x,y =0) = Ipy(x).
» Bayes optimal classifier: posterior
9 =p/(p+po) -
» Train generator via minimizing the logistic likelihood

0 ™5 0(6) := By, [ynao(x) + (1 = y) In(1 — ()]

» generator’s goal: generate samples that are indistinguishable from
real data, even for the best possible classifier

» can be shown to be equivalent to Jensen-Shannon divergence:
£*(0) = JS(p,pp) — In2



From Real Discriminaton to Generation

» Optimal classifier is in general inaccessible

» Instead: define a classification model
g x> [0;1], o€
» Define objective via bound

€°(0) = sup (0, ¢)
ped

(0, 9) := Epy [y gy(x) + (1 = y) In(1 — g4(x))]

» find best classifier within restricted family
> typically: ® = weight space of DNN

> training objective for generator is defined implicitly over sup



Optimizing GANs

» Saddle-point problem

0" := arg min{sup £(6, ¢)}
0cO  $cd

» explicitly performing inner sup is impractical

» various methods from optimization / solving games

» SGD as a heuristic (may diverge!)
et-‘rl — et o nveg(at’ ¢t)

¢t+1 — ¢+ nv¢£(9t+17¢t)

» Ongoing research: find better optimization methods



Section 4

Autoregressive Models



Approaches to Learn a Generative Model

v

Variational Autoencoders (VAEs), Generative Adversarial Networks
(GANSs): complicated learning method; not always successful

v

Simpler strategy: Autoregressive models - generate output one
variable at a time

> justified by chain rule: p(x1,...,2m,) = [112, p(x|21:0-1)

v

Example: PixelCNN (A. van den Oord et al. 2016)

» generative model for images

» network models conditional distribution of every individual pixel
given previous pixels (to the left and to the top).

v

Similar approaches used for speech (e.g. WaveNet)



Pixel CNN

» Model joint distribution of pixels over
image x as product of conditional
distributions, where x; is a single pixel:

p(x) = [[p(ila1, ..., zi1)

=1

» Visualization on the left: generate pixel x;
by conditioning on previously generated
pixels z1,...x;_1

» Ordering of the pixel dependencies is in
raster scan order: row by row and pixel by
pixel within every row




Pixel CNN

> Need to make sure the CNN can only use information about pixels
above and to the left of the current pixel

» Used to mask the 5x5 filters to make sure the model cannot read
pixels below (or strictly to the right) of the current pixel to make
its predictions

olo|lr |~~~
o|lo|lr|~|~

|||~

o|lo|o|~|~
olo|o|~ |~




Prediction with Pixel CNN

» During sampling the predictions are sequential: every time a pixel
is predicted, it is fed back into the network to predict the next pixel

» Drawback: Slow process



Image Generation with Pixel CNN
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