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Section 1

Sparse Coding



Sparse Coding

» Signals can be represented in different ways

> infinite number of possible representations
» each capturing different characteristics

» example: Fourier series




Sparse Coding

» Natural signals often allow for sparse representation

» sparsity: many coefficients vanish (= 0), few are non-zero
> due to regularity of signal
» need to find suitable dictionary of atoms U = {uy,...,ur}

» such that accurate signal representation in span(i{)



Signal Compression

» Given original signal x € R” and orthogonal matrix U

» Compute linear transformation = change of basis

H B UT '

D x D

» Energy preservation

.
10" x||* = [x|

» direct consequence of orthogonality

> preservation of length



Signal Compression

» Truncate “small” values of z = estimate Z

» encoding only K < D non-zero values

» for instance: employ a threshold ¢

) {0 if |2q] < €
Zd =

zq otherwise
» Reconstruct signal through inverse transform
x=Uz, as U'=U"!

» efficient inversion via transposition

> key idea: orthogonality of U



Decomposition and Reconstruction

» Given x, orthonormal basis {uy,...,up} (columns of U)

|
WE

zd(x) - ug,  za(x) = (X, uq)
=1

» Sparsification = only use K-subset o of basis functions
X = Z zd(x) - Uy
deo

» Reconstruction error:

I = %2 =D 11(x, ug) - ual* = Y (x,ug)°

déo déo



1-D signal processing

Discrete Fourier Transform
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Discrete Wavelet Transform
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Noisy signal: x
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Fourier spectrum: z = U'x
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Retain 3% of the coefficients: z
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Denoised signal: x = Uz
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Signal Compression: Observations

— Original
— Denoised
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» Signal is compressed by 97%.
» High signal frequencies have small amplitudes in spectrum

» Reconstructed signal: smoother than original one (low-pass filter)



Challenge: Localized signal
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Challenge: Poor denoising of localized signal
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Haar Wavelets

W(x)
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Note that the wavelet basis is orthogonal



Haar Wavelets — D =4

» For D = 4 we get the following orthogonal matrix

1 1 V2 0
111 1 =v2 o0
U=- V2
211 =1 0 V2
1 -1 0 =2



8

Haar Wavelets — D

» For D = 8 we get the following orthogonal matrix




Wavelets

Haar Wavelets

Symmiet-8 Wavelets
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Wavelet denoising of localized signal
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Wavelet denoising of smooth signal
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Fourier basis vs Wavelet basis

A priori, there does not exist a choice of a transform that is better
than all other choices. It depends on the signal type.

Fourier basis T \
» Global support w
» Good for “sine like" *W
signals 4
» Poor for localized signal

Wavelet basis
> Local support /

» Good for localized signal

» Poor for non-vanishing h‘

signals




Principal Component Analysis

» Given X =[x ...xy] vectors in RP
- N

» Mean: X = % Y1 Xn

» Compute centered covariance matrix

E:%(X—M)(X—M)T, M:=[x ... X

N times

» Compute eigenvector decomposition
¥ = UAU'

> 3 real symmetric matrix, U: orthogonal
> eigenvalues ordered: A1 > Ay > - > Ap



Principal Component Analysis (cont’d)

» Karhunen-Loeve transform or Hoteling transform

» "throw away” the D — K directions with smallest variance
(dependent on signal set, not individual signal)

> equivalently: keep K largest eigenvectors

A . N zqg A< K
x=Uz 24= .
0 otherwise
» suffices to define Uk as
UK = [ul . "UK]

and to reconstruct via

x = Uk z[1.x]



Communication Cost

PCA basis

Fixed basis

>

v

v

Ug is data-dependent, optimal for given 3

Transmit: eigenvectors {uy : d < K} and z.x.

Sender and receiver agree on basis beforehand,
e.g. Haar Wavelets.

Transmit: non-zero elements of Z.



2-D Discrete cosine transform

» in JPEG, DCT is applied to 8x8 blocks of an image.

» further optimizations to improve compression.



2-D Discrete cosine transform

> Attention: think of each 8 x 8 patch as a
D = 64 vector

» Basis functions are D = 64 vectors that
can also be displayed as 8 x 8 patches

» There are 64 basis functions, which can be
arranged on a 8 x 8 grid!

» Each red square is a basis function!



Image compression with wavelets

(a) Discrete image
of 2562 pixels.

(b) Orthogonal
wavelet coefficients
at 4 different scales;
black points
correspond to large
coefficients.

(c) Approximation
using the three
largest scales.

(d) Approximation
using the K largest
coefficients

2
(K = 38).




Image denoising with wavelets

(a) Noisy image.
(b) Orthogonal
wavelet coefficients
at 4 different scales;
black points
correspond to large
coefficients.

(c) Approximation
using the three
largest scales.

(d) Approximation
using the K largest
coefficients

2
(1 = 52).
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Image compression

Original Lena Image (256 x 256 Pixels,
24-Bit AGB)

JPEG2000 Compressed (Compression
Ratio 43:1)
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Computational Efficiency

» Basis transform via matrix multiplication = O(D?) cost

» In practice: exploit fast transforms
» Fourier: O(Dlog D)
» Wavelet: O(D) or O(Dlog D)

> Image compression:

» break-up images into blocks, transform each block
» avoids quadratic blow-up
» for example JPEG: DCT on 8x8 blocks



Section 2

Overcomplete Dictionaries



Sparse Representations

Summary: Natural signals have approx. sparse representations in
suitable orthogonal bases, e.g. wavelets for natural images.

= e

From S. Mallat, A Wavelet Tour of Signal Processing — The Sparse
Way, Academic Press, 2009



Recall so far...

» Coding via orthogonal transforms

» given: signal x and orthonormal matrix U
» compute linear transformation (change of basis) z = U'x
» truncate “small” values, z — 2.

» compute inverse transform (recall U=! = UT) x = Uz.

» Measuring Accuracy

> reconstruction error ||x — X||

> sparsity of the coding vector z

» Dictionary choice
» Fourier dictionary is good for “sine like” signals.
» wavelet dictionary is good for localized signals.

» more general dictionaries: overcomplete dictionaries...



Overcomplete Dictionaries

» Beyond a "change of basis”
» no single basis is optimally sparse for all signal classes

» overcompleteness (U € RP*L such that L > D):
more atoms (dictionary elements) than dimensions

» union of orthogonal bases and general overcomplete dictionaries:
coding algorithm chooses best representation.

» decoding: involved, no closed form reconstruction formula



Morphology of Signals |
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Dictionary selection strategy:

» Manually, by signal inspection

coefficient index
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magnitude
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» Try several, choose the one which affords sparsest coding




Morphology of Signals Il

\ — +
From S. Mallat, A Wavelet Tour of Signal Processing — The Sparse Way,

Academic Press, 2009
Signal might be a superposition of several characteristics:

» smooth gradients plus oscillating texture

» hence: single orthonormal basis cannot sparsely code both.

Coding idea: Algorithm picks atoms (dictionary elements) from a
union of bases, each one responsible for one cgaracyeris’gjc.




General Overcomplete Dictionaries

» Consider data set {x1,...,X10000} € R3:

» Full coding (K = 3) in spanning basis U € R3*3

» K = 2 coding possible using a four atom dictionary

fj = [u1 U9 us LI4] S R3X4

aligned with densely populated subspaces.

» L > D atoms are no longer linearly independent.



Example: Directional Gabor Wavelets

» Gabor wavelets

» directional oscillation
» amplitude modulated by Gaussian window

g (n1,m2; pa, pi2, f,0) o< exp [— (n1 — M1)2] €Xp [— (ng — H2)2}

x cos (f - (ny cos @ + nasinf))

F A\

(0,0,5,1) (0,0,10,2) (0,0,15,3)

» discretizing the parameter range of ui, po, f and 6 determines the
dictionary size, i.e. the overcompleteness factor %.



Coherence
Increasing the overcompleteness factor %:

> Increases (potentially) the sparsity of the coding.

> Increases the linear dependency between atoms.
Linear dependency measure for dictionaries: coherence

T

m (U) = max
i, it

» m (B) = 0 for an orthogonal basis B.
» m ([Bu]) > —= if atom u is added to orthogonal B.

&)



Signal Reconstruction (Invertible Dictionary)

U is orthonormal

» matrix multiplication x = Uz

U is spanning basis (D linearly independent atoms)

> X = (UT)_1 zZ

» inverting U can be ill-conditioned



Signal Reconstruction (General Dictionary)

U € RP*L js overcomplete (L > D):

» [ll-posed problem: more unknowns than equations.
» add constraint: find sparsest z € R such that x = Uz

Solve mathematical program

z* € argmin |z,
z

s.t. x = Uz

> ||z]|, counts the number of non-zero elements in z.



Signal Reconstruction: Matching Pursuit

» Sparsest solution, under the equality constraint:

z* € argmin ||z|p, st. x= Uz
z

» NP hard combinatorial problem
» brute-force: exhaustive search over all atom subsets

» greedy approximation: Matching Pursuit

» Matching Pursuit (Mallat & Zhang 1993)

» assume (length) normalized atoms u;
» greedily select j* = arg max; |(x,u;)|
» add X + X+ (x,u;)u;-

» compute residual x < x — (X, u;-)u;-

> repeat



Signal Reconstruction using Convex Optimization

» Minimum /1-norm solution, under the equality constraint:
z* € argmin |z][;, st. x=TUz
z
» Convex Optimization Problem

Under suitable conditions on U, the solutions of the two problems
are equivalent! = can use standard convex optimization methods.
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