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Section 1

Sparse Coding
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Sparse Coding

I Signals can be represented in different ways

I infinite number of possible representations

I each capturing different characteristics

I example: Fourier series

= +
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Sparse Coding

I Natural signals often allow for sparse representation

I sparsity: many coefficients vanish (≈ 0), few are non-zero

I due to regularity of signal

I need to find suitable dictionary of atoms U = {u1, . . . ,uL}
I such that accurate signal representation in span(U)
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Signal Compression

I Given original signal x ∈ RD and orthogonal matrix U

I Compute linear transformation = change of basis

z = U>

D × D

· x

I Energy preservation

‖U>x‖2 = ‖x‖2

I direct consequence of orthogonality

I preservation of length
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Signal Compression

I Truncate “small” values of z =⇒ estimate ẑ

I encoding only K � D non-zero values

I for instance: employ a threshold ε

ẑd =

{
0 if |zd| < ε

zd otherwise

I Reconstruct signal through inverse transform

x̂ = Uẑ, as U> = U−1

I efficient inversion via transposition

I key idea: orthogonality of U
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Decomposition and Reconstruction

I Given x, orthonormal basis {u1, . . . ,uD} (columns of U)

x =

D∑
d=1

zd(x) · ud, zd(x) := 〈x,ud〉

I Sparsification ≡ only use K-subset σ of basis functions

x̂ =
∑
d∈σ

zd(x) · ud

I Reconstruction error:

‖x− x̂‖2 =
∑
d6∈σ
‖〈x,ud〉 · ud‖2 =

∑
d6∈σ
〈x,ud〉2
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1-D signal processing

Discrete Fourier Transform

Discrete Wavelet Transform
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Noisy signal: x
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Fourier spectrum: z = U>x
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Retain 3% of the coefficients: ẑ
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Denoised signal: x̂ = Uẑ
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Signal Compression: Observations

I Signal is compressed by 97%.

I High signal frequencies have small amplitudes in spectrum

I Reconstructed signal: smoother than original one (low-pass filter)
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Challenge: Localized signal
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Challenge: Poor denoising of localized signal
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Haar Wavelets
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Note that the wavelet basis is orthogonal
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Haar Wavelets – D = 4

I For D = 4 we get the following orthogonal matrix

U =
1

2


1 1

√
2 0

1 1 −
√

2 0

1 −1 0
√

2

1 −1 0 −
√

2
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Haar Wavelets – D = 8

I For D = 8 we get the following orthogonal matrix

U =
1

2
√

2



1 1
√

2 0 2 0 0 0

1 1
√

2 0 −2 0 0 0

1 1 −
√

2 0 0 2 0 0

1 1 −
√

2 0 0 −2 0 0

1 −1 0
√

2 0 0 2 0

1 −1 0
√

2 0 0 −2 0

1 −1 0 −
√

2 0 0 0 2

1 −1 0 −
√

2 0 0 0 −2
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Wavelets
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Wavelet denoising of localized signal
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Wavelet denoising of smooth signal
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Fourier basis vs Wavelet basis

A priori, there does not exist a choice of a transform that is better
than all other choices. It depends on the signal type.

Fourier basis

I Global support
I Good for “sine like”

signals
I Poor for localized signal

Wavelet basis

I Local support
I Good for localized signal
I Poor for non-vanishing

signals



23/44

Principal Component Analysis

I Given X = [x1 . . .xN ] vectors in RD

I Mean: x̄ = 1
N

∑N
n=1 xn

I Compute centered covariance matrix

Σ =
1

N
(X−M)(X−M)>, M := [x̄ . . . x̄︸ ︷︷ ︸

N times

]

I Compute eigenvector decomposition

Σ = UΛU>

I Σ: real symmetric matrix, U: orthogonal

I eigenvalues ordered: λ1 ≥ λ2 ≥ · · · ≥ λD
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Principal Component Analysis (cont’d)

I Karhunen-Loeve transform or Hoteling transform

I ”throw away” the D −K directions with smallest variance
(dependent on signal set, not individual signal)

I equivalently: keep K largest eigenvectors

x̂ = Uẑ, ẑd =

{
zd if d ≤ K
0 otherwise

I suffices to define UK as

UK := [u1 · · ·uK ]

and to reconstruct via

x̂ = UK z[1:K]
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Communication Cost

PCA basis I UK is data-dependent, optimal for given Σ

I Transmit: eigenvectors {ud : d ≤ K} and z1:K .

Fixed basis I Sender and receiver agree on basis beforehand,
e.g. Haar Wavelets.

I Transmit: non-zero elements of ẑ.
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2-D Discrete cosine transform

I in JPEG, DCT is applied to 8x8 blocks of an image.

I further optimizations to improve compression.
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2-D Discrete cosine transform

I Attention: think of each 8× 8 patch as a
D = 64 vector

I Basis functions are D = 64 vectors that
can also be displayed as 8× 8 patches

I There are 64 basis functions, which can be
arranged on a 8× 8 grid!

I Each red square is a basis function!
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Image compression with wavelets

(a) Discrete image
of 2562 pixels.
(b) Orthogonal
wavelet coefficients
at 4 different scales;
black points
correspond to large
coefficients.
(c) Approximation
using the three
largest scales.
(d) Approximation
using the K largest
coefficients
(K = 2562

16 ).
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Image denoising with wavelets

(a) Noisy image.
(b) Orthogonal
wavelet coefficients
at 4 different scales;
black points
correspond to large
coefficients.
(c) Approximation
using the three
largest scales.
(d) Approximation
using the K largest
coefficients
(K = 2562

16 ).
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Image compression
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Computational Efficiency

I Basis transform via matrix multiplication = O(D2) cost

I In practice: exploit fast transforms

I Fourier: O(D logD)

I Wavelet: O(D) or O(D logD)

I Image compression:

I break-up images into blocks, transform each block

I avoids quadratic blow-up

I for example JPEG: DCT on 8x8 blocks
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Section 2

Overcomplete Dictionaries
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Sparse Representations

Summary: Natural signals have approx. sparse representations in
suitable orthogonal bases, e.g. wavelets for natural images.

6 CHAPTER 1 Sparse Representations

(a) (b)

(c) (d)

FIGURE 1.1

(a) Discrete image f [n] of N �2562 pixels. (b) Array of N orthogonal wavelet coefficients
〈 f , �k

j,n〉 for k�1, 2, 3, and 4 scales 2 j ; black points correspond to |〈 f , �k
j,n〉|
T . (c) Linear

approximation from the N/16 wavelet coefficients at the three largest scales. (d) Nonlinear
approximation from the M �N/16 wavelet coefficients of largest amplitude shown in (b).

Stochastic versus Deterministic Signal Models
A representation is optimized relative to a signal class, corresponding to all poten-
tial signals encountered in an application. This requires building signal models that
carry available prior information.

A signal f can be modeled as a realization of a random process F , the probability
distribution of which is known a priori.A Bayesian approach then tries to minimize

From S. Mallat, A Wavelet Tour of Signal Processing – The Sparse
Way, Academic Press, 2009
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Recall so far...

I Coding via orthogonal transforms

I given: signal x and orthonormal matrix U

I compute linear transformation (change of basis) z = U>x

I truncate “small” values, z 7→ ẑ.

I compute inverse transform (recall U−1 = U>) x̂ = Uẑ.

I Measuring Accuracy

I reconstruction error ‖x− x̂‖
I sparsity of the coding vector ẑ

I Dictionary choice

I Fourier dictionary is good for “sine like” signals.

I wavelet dictionary is good for localized signals.

I more general dictionaries: overcomplete dictionaries...
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Overcomplete Dictionaries

I Beyond a ”change of basis”

I no single basis is optimally sparse for all signal classes

I overcompleteness (U ∈ RD×L such that L > D):
more atoms (dictionary elements) than dimensions

I union of orthogonal bases and general overcomplete dictionaries:
coding algorithm chooses best representation.

I decoding: involved, no closed form reconstruction formula
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Morphology of Signals I
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Dictionary selection strategy:

I Manually, by signal inspection

I Try several, choose the one which affords sparsest coding
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Morphology of Signals II
688 CHAPTER 12 Sparsity in Redundant Dictionaries

(a) (b) (c)

FIGURE 12.25

Image separation f � f0 � f1 in a dictionary that is a union of a wavelet and a local cosine
dictionary: (a) image f , (b) piecewise regular component f0, and (c) oscillatory texture f1.

To take into account the differences between edges and textures, Meyer [47]
introduced an image model f � f0 � f1, where f0 is a bounded variation function
including edges, and f1 is an oscillatory texture function that belongs to a differ-
ent functional space. Theorem 9.17 proves that bounded variation images f0 are
sparse in a translation-invariant dictionary D0 of wavelets. Dictionaries of curvelets
in Section 5.5.2 or bandlets in Section 12.2.4 can also improve the approximations
of geometrically regular edges in f0.

The oscillatory image f1 has well-defined local frequencies and is therefore sparse
in a dictionary D1 of two-dimensional local cosine bases, defined in Section 8.5.3.
A dictionary D�D0∪D1 is defined as a union of a wavelet dictionary and a local
cosine dictionary [244]. A sparse representation ã of f in D is computed with an l1

basis pursuit,and approximations f̃0 and f̃1 of f0 and f1 are computed with (12.156).
Figure 12.25 shows that this algorithm can indeed separate oscillating textures from
piecewise regular image variations in such a dictionary.

12.6 MULTICHANNEL SIGNALS
Multiple channel measurements often have strong dependencies that a represen-
tation should take into account. For color images, the green, blue, and red (RGB)
channels are highly correlated. Indeed, edges and sharp variations typically occur
at the same location in each color channel. Stereo audio recordings or multiple
point recordings of EEGs also output dependent measurement vectors. Taking
into account the structural dependancies of these channels improves compres-
sion or denoising applications, but also provides solutions to the source separation
problems studied in Section 13.5.

A signal with K channels is considered as a signal vector f [n]�( fk[n])0�k	K .
The Euclidean norm of a vector a�(ak)0�k	K ∈CK is written as ‖a‖2 �

∑K�1
k�0 |ak|2.

=
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introduced an image model f � f0 � f1, where f0 is a bounded variation function
including edges, and f1 is an oscillatory texture function that belongs to a differ-
ent functional space. Theorem 9.17 proves that bounded variation images f0 are
sparse in a translation-invariant dictionary D0 of wavelets. Dictionaries of curvelets
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A dictionary D�D0∪D1 is defined as a union of a wavelet dictionary and a local
cosine dictionary [244]. A sparse representation ã of f in D is computed with an l1

basis pursuit,and approximations f̃0 and f̃1 of f0 and f1 are computed with (12.156).
Figure 12.25 shows that this algorithm can indeed separate oscillating textures from
piecewise regular image variations in such a dictionary.

12.6 MULTICHANNEL SIGNALS
Multiple channel measurements often have strong dependencies that a represen-
tation should take into account. For color images, the green, blue, and red (RGB)
channels are highly correlated. Indeed, edges and sharp variations typically occur
at the same location in each color channel. Stereo audio recordings or multiple
point recordings of EEGs also output dependent measurement vectors. Taking
into account the structural dependancies of these channels improves compres-
sion or denoising applications, but also provides solutions to the source separation
problems studied in Section 13.5.

A signal with K channels is considered as a signal vector f [n]�( fk[n])0�k	K .
The Euclidean norm of a vector a�(ak)0�k	K ∈CK is written as ‖a‖2 �

∑K�1
k�0 |ak|2.

From S. Mallat, A Wavelet Tour of Signal Processing – The Sparse Way,

Academic Press, 2009

Signal might be a superposition of several characteristics:

I smooth gradients plus oscillating texture

I hence: single orthonormal basis cannot sparsely code both.

Coding idea: Algorithm picks atoms (dictionary elements) from a
union of bases, each one responsible for one characteristic.
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General Overcomplete Dictionaries

I Consider data set {x1, . . . ,x10000} ∈ R3:

−2−101

I Full coding (K = 3) in spanning basis U ∈ R3×3

I K = 2 coding possible using a four atom dictionary

Ũ = [u1 u2 u3 u4] ∈ R3×4

aligned with densely populated subspaces.

I L > D atoms are no longer linearly independent.
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Example: Directional Gabor Wavelets

I Gabor wavelets

I directional oscillation

I amplitude modulated by Gaussian window

g (n1, n2;µ1, µ2, f, θ) ∝ exp
[
− (n1 − µ1)

2
]

exp
[
− (n2 − µ2)

2
]

× cos (f · (n1 cos θ + n2 sin θ))
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I discretizing the parameter range of µ1, µ2, f and θ determines the
dictionary size, i.e. the overcompleteness factor L

D .
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Coherence

Increasing the overcompleteness factor L
D :

I Increases (potentially) the sparsity of the coding.

I Increases the linear dependency between atoms.

Linear dependency measure for dictionaries: coherence

m (U) = max
i,j:i 6=j

∣∣∣u>i uj

∣∣∣ .
I m (B) = 0 for an orthogonal basis B.

I m ([B u]) ≥ 1√
D

if atom u is added to orthogonal B.
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Signal Reconstruction (Invertible Dictionary)

U is orthonormal

I matrix multiplication x = Uz

U is spanning basis (D linearly independent atoms)

I x =
(
U>
)−1

z

I inverting U> can be ill-conditioned
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Signal Reconstruction (General Dictionary)

U ∈ RD×L is overcomplete (L > D):

I Ill-posed problem: more unknowns than equations.

I add constraint: find sparsest z ∈ RL such that x = Uz

Solve mathematical program

z? ∈ arg min
z
‖z‖0

s.t. x = Uz

I ‖z‖0 counts the number of non-zero elements in z.
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Signal Reconstruction: Matching Pursuit

I Sparsest solution, under the equality constraint:

z? ∈ arg min
z

‖z‖0, s.t. x = Uz

I NP hard combinatorial problem

I brute-force: exhaustive search over all atom subsets

I greedy approximation: Matching Pursuit

I Matching Pursuit (Mallat & Zhang 1993)

I assume (length) normalized atoms uj

I greedily select j∗ = arg maxj |〈x,uj〉|
I add x̂← x̂ + 〈x,uj∗〉uj∗

I compute residual x← x− 〈x,uj∗〉uj∗

I repeat
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Signal Reconstruction using Convex Optimization

I Minimum `1-norm solution, under the equality constraint:

z? ∈ arg min
z

‖z‖1, s.t. x = Uz

I Convex Optimization Problem

Under suitable conditions on U, the solutions of the two problems
are equivalent! ⇒ can use standard convex optimization methods.
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