Computational Intelligence Laboratory Lecture 10 Dictionary Learning

Thomas Hofmann

ETH Zurich – <cil.inf.ethz.ch>

May 15, 2020

K □ ▶ K n ④ ▶ K ミ ▶ K ミ ▶ → ミ → ⊙ Q Q → 1/40

Section 1

[Compressive Sensing](#page-1-0)

4 미 > 4 레 > 4 로 > 4 로 > - 로 - 9 9 Q 0 - 2/40

Compressive Sensing

- \triangleright Why should we gather huge amounts of information if we then compress it anyway and throw away most of it?
- \blacktriangleright Let's instead compress data while gathering.
- \triangleright It decreases acquisition time, power consumption and required storage space.

4 ロ ▶ 4 @ ▶ 4 할 ▶ 4 할 ▶ 그럴 ▶ 이 할 수 있지 않아요 .
2/40

This idea is called compressive sensing.

Compressive Sensing

When is it important? Photoshooting in space!

- \triangleright Saving memory and battery power ...
- \blacktriangleright ... for a camera which is orbiting Mars hugely important!
- \triangleright Fewer images acquired \implies less energy consumed
- \triangleright Storage space could also be an issue

NASA/JPL/Corby Waste

4/ 미 ▶ 4/ 메 ▶ 4/ 로 ▶ 4/로 ▶ 그로 또 9/ 여 0 14/40

Compressive Sensing for MRI

- \blacktriangleright Highres MRI: patient has to be perfectly still during scanning
- \triangleright Standard practice: ask patient to stop respiration
- \triangleright Scanning time becomes critically important!
- \triangleright Decreasing number of measurements \implies reduced scan time

Xiaojing Ye (2011)

Compressive Sensing: Concept

► Original signal $\mathbf{x} \in \mathbb{R}^D$, K -sparse in orthonormal basis \mathbf{U}

$$
\mathbf{x} = \mathbf{U}\mathbf{z}, \quad \text{s.t.} \quad \|\mathbf{z}\|_0 = K
$$

 \triangleright Main idea: acquire set y of M linear combinations of signal \implies reconstruct signal from these **measurements**

$$
y_k = \langle \mathbf{w}_k, \mathbf{x} \rangle, \quad k = 1, \dots, M
$$

 $\mathbf{y} = \mathbf{W}\mathbf{x} = \mathbf{W}\mathbf{U}\mathbf{z} =: \Theta \mathbf{z}, \text{ with } \Theta = \mathbf{W}\mathbf{U} \in \mathbb{R}^{M \times D}$

4 ロ ▶ (@) (홍) (홍) - 홍 - ⊙ 9 (0 / 6/40)

- \blacktriangleright measurement $=$ linear feature
- If $M \ll D$: measured signal y much shorter than x.

Compressive Sensing

 $\mathbf{y} = \mathbf{W}\mathbf{x} = \mathbf{W}\mathbf{U}\mathbf{z} =: \Theta \mathbf{z}, \text{ with } \Theta = \mathbf{W}\mathbf{U} \in \mathbb{R}^{M \times D}$

- Surprisingly given **any** orthonormal basis U we can obtain a stable reconstruction for any K -sparse, compressible signal!
- \blacktriangleright Sufficient conditions:
	- 1. $\mathbf{W} =$ Gaussian random projection, i.e. $w_{ij} \sim \mathcal{N}(0, \frac{1}{D})$
	- 2. $M \ge cK \log\left(\frac{D}{K}\right)$, where c is some constant.

Compressive Sensing: Signal Reconstruction

 \blacktriangleright Recovery of $\mathbf{x} \in \mathbb{R}^D$ from measured signal $\mathbf{y} \in \mathbb{R}^M$ \equiv need to find sparse representation z :

$$
\mathbf{y} = \mathbf{W}\mathbf{x} = \mathbf{W}\mathbf{U}\mathbf{z} = \Theta \mathbf{z}, \text{ with } \Theta \in \mathbb{R}^{M \times D}
$$

- ightharpoonup variable x via $x = Uz$
- ighthrowns than equations ($M \ll D$)
- \triangleright Optimization problem
	- \blacktriangleright find sparsest solution s.t. equality holds:

$$
\mathbf{z}^* \in \argmin_{\mathbf{z}} \|\mathbf{z}\|_0, \text{ s.t. } \mathbf{y} = \Theta \mathbf{z}
$$

 \triangleright apply same reconstruction techniques as before: (1) Convex Optimization or (2) Matching Pursuit

Section 2

[Dictionary Learning](#page-8-0)

9/40

Dictionary Learning

Can we work with better and more problem specific dictionaries?

4 ロ ▶ 4 @ ▶ 4 로 ▶ 4 로 ▶ - 로 - 9 9 0 0 10/40

Recap: Dictionary Encoding I

Fixed orthonormal basis:

11/40 11/40

- Advantage: efficient coding by matrix multiplication $\mathbf{z} = \mathbf{U}^{\top} \mathbf{x}$
- \triangleright Disadvantage: only sparse for specific classes of signals
	- \triangleright strong a priori assumptions

Recap: Dictionary Encoding II

Fixed overcomplete basis:

- \triangleright Advantage: sparse coding for several signal classes
- \triangleright Disadvantage: finding sparsest code ...
	- \triangleright may require approximation algorithm (e.g. matching pursuit)
	- rianglephendric if dictionary size L and coherence $m(\mathbf{U})$ are large.

Dictionary Encoding III

Learning the dictionary:

- \triangleright Advantage: we adapt a dictionary to signal characteristics \implies same approximation error achievable with smaller L
- \triangleright Challenge: we have to solve a matrix factorization problem

13/40

- \triangleright subject to sparsity constraint on Z and
- \triangleright subject to column/atom norm constraint on U.

Dictionary Adaptation

- \triangleright 8 \times 8 pixel image patches of face images
- ► 11k examples for training, i.e. $\mathbf{X} \in \mathbb{R}^{64 \times 11000}$
- \blacktriangleright Dictionary $\mathbf{U}\in \mathbb{R}^{64\times 441}$ (ca. 7 times overcomplete): $\mathsf{pre}(\mathsf{e})$.

M. Aharon et al., IEEE Transactions on Signal Processing, 54, 4311-4322, 2006 $\overline{}$ Overcomplete DCT Overcomplete Haar Learned dictionary

Inpainting Comparison

Reconstruction:

- 1. One sparse coding step of observed pixels
- 2. Predict missing pixels from sparse code

M. Aharon et al., IEEE Transactions on Signal Processing, 54, 4311-4322, 2006

15/40

Matrix Factorization

$$
(\mathbf{U}^\star, \mathbf{Z}^\star) \in \arg\min_{\mathbf{U},\mathbf{Z}} \|\mathbf{X} - \mathbf{U} \cdot \mathbf{Z}\|_F^2
$$

- \blacktriangleright Frobenius norm: $\|\mathbf{A}\|_F^2 = \sum_{i,j} a_{i,j}^2$
- \triangleright objective *not* jointly convex in U and Z
- \triangleright convex in either U or Z (with unique minimum)

Iterative greedy minimization

- 1. Coding step: $\mathbf{Z}^{t+1} \in \arg \min_{\mathbf{Z}} \|\mathbf{X} \mathbf{U}^t \mathbf{Z}\|$ 2 F , subject to Z being sparse (non-convex) and U being fixed.
- 2. Dictionary update step: $\mathbf{U}^{t+1} \in \argmin_{\mathbf{U}} ||\mathbf{X} \mathbf{U} \mathbf{Z}^{t+1}||$ 2 F , subject to $\|\mathbf{u}_l\|_2 = 1$ for all $l = 1, \dots, L$ and **Z** being fixed.

Coding Step

$$
\mathbf{Z}^{t+1} \in \arg\min_{\mathbf{Z}} \left\| \mathbf{X} - \mathbf{U}^t \mathbf{Z} \right\|_F^2
$$

- \blacktriangleright Column separable residual: $\|\mathbf{R}\|_F^2 = \sum_{i,j} r_{i,j}^2 = \sum_j \|\mathbf{r}_j\|_2^2$ 2
- \blacktriangleright N independent sparse coding steps: for all $n = 1, \ldots N$

$$
\mathbf{z}_{n}^{t+1} \in \arg\min_{\mathbf{z}} \|\mathbf{z}\|_{0}
$$

s.t.
$$
\|\mathbf{x}_{n} - \mathbf{U}^{t}\mathbf{z}\|_{2} \leq \sigma \cdot \|\mathbf{x}_{n}\|_{2}
$$

10 H (1) + 4 E H (1) + E + 9 Q (2) 17/40

Dictionary Update I

$$
\mathbf{U}^{t+1} \in \arg\min_{\mathbf{U}} \left\| \mathbf{X} - \mathbf{U} \mathbf{Z}^{t+1} \right\|_F^2
$$

18/40 - 18/40 - 18/40 - 18/40 - 18/40 - 18/40

- Residual *not separable* in atoms (columns of \mathbf{U})
- Approximation: update one atom at a time $(\forall l)$
	- 1. Set $\mathbf{U} = [\mathbf{u}_1^t \ \cdots \ \mathbf{u}_l \ \cdots \ \mathbf{u}_L^t]$, i.e. fix all atoms except \mathbf{u}_l .
	- 2. Isolate \mathbf{R}_{l}^{t} , the residual that is due to atom $\mathbf{u}_{l}.$
	- 3. Find \mathbf{u}_l^* that minimizes \mathbf{R}_l^t , subject to $\left\|\mathbf{u}_l^*\right\|_2=1$.

Dictionary Update II

 \blacktriangleright Isolate \mathbf{R}_l^t : residual due to atom \mathbf{u}_l

$$
\begin{aligned} &\left\| \mathbf{X} - \left[\mathbf{u}_{1}^{t} \ \cdots \ \mathbf{u}_{l} \ \cdots \mathbf{u}_{L}^{t} \right] \cdot \mathbf{Z}^{t+1} \right\|_{F}^{2} \\ &=\ \left\| \mathbf{X} - \left(\sum_{e \neq l} \mathbf{u}_{e}^{t} \left(\mathbf{z}_{e}^{t+1} \right)^{\top} + \mathbf{u}_{l} \left(\mathbf{z}_{l}^{t+1} \right)^{\top} \right) \right\|_{F}^{2} \\ &=\ \left\| \mathbf{R}_{l}^{t} - \mathbf{u}_{l} \left(\mathbf{z}_{l}^{t+1} \right)^{\top} \right\|_{F}^{2} \end{aligned}
$$

19/40

 \blacktriangleright \mathbf{z}_l^{\top} is the *l*-th row of matrix **Z**.

Dictionary Update III

How can we find \mathbf{u}_l^* ?

- \blacktriangleright \mathbf{u}_l (\mathbf{z}_l^{t+1}) $\left[\begin{smallmatrix} t+1 \ l \end{smallmatrix} \right]^\top$ is an outer product, i.e. a matrix
- \triangleright Approximating residual with rank 1 matrix

$$
\left\| \mathbf{R}_{l}^{t} - \mathbf{u}_{l}\left(\mathbf{z}_{l}^{t+1}\right)^{\top} \right\|_{F}^{2}
$$

 \blacktriangleright "Approximately" achieved by SVD of \mathbf{R}_l^t :

$$
\mathbf{R}^t_l = \tilde{\mathbf{U}} \mathbf{\Sigma} \tilde{\mathbf{V}}^\top = \sum_i \sigma_i \tilde{\mathbf{u}}_i \tilde{\mathbf{v}}_i^\top
$$

- \blacktriangleright $\mathbf{u}_l^* = \tilde{\mathbf{u}}_1$ is first left-singular vector.
- \blacktriangleright $\left\| \mathbf{u}_{l}^{*} \right\|_{2} = 1$ naturally satisfied.
- ightharpoonup also update l-th row of Z (see next slide)

Approximate K-SVD Dictionary Update

Dictionary update by a single power iteration (line 8-9)

1: Input:
$$
\mathbf{X} = \mathbb{R}^{D \times N}
$$
; $\mathbf{U} = \mathbb{R}^{D \times L}$; $\mathbf{Z} = \mathbb{R}^{L \times N}$

- 2: Output: Updated dictionary U
- 3: for $l \leftarrow 1$ to L do

4:
$$
\mathbf{u}_{(:,l)} \leftarrow \mathbf{0},
$$

5: $\mathcal{N} \leftarrow \{n | Z_{ln} \neq 0, 1 \le n \le N\}$ % active data points

6:
$$
\mathbf{R} \leftarrow \mathbf{X}_{(:,\mathcal{N})} - \mathbf{UZ}_{(:,\mathcal{N})}
$$
% residual

$$
7: \quad \mathbf{g} \leftarrow \mathbf{z}_{(l,\mathcal{N})}^{\perp}
$$

$$
\begin{array}{ll} \text{8:} & \mathbf{h} \leftarrow \mathbf{R}\mathbf{g}/\|\mathbf{R}\mathbf{g}\| \ \text{ ``power iteration} \\ \text{9:} & \mathbf{g} \leftarrow \mathbf{R}^\top\mathbf{h} \end{array}
$$

- 10: $\mathbf{u}_{(:,l)} \leftarrow \mathbf{h}$ % update
- $\mathbf{11:} \quad \mathbf{z}_{(l,\mathcal{N})} \leftarrow \mathbf{g}^{\top}$

12: end for

CD Sigg, T Dikk, JM Buhmann, Speech Enhancement using Generative Dictionary Learning, IEEE-TASLP 2012

Initialization

Sensitive to choice of \mathbf{U}^0 : the initial candidate solution is optimized locally and greedily until no progress possible.

A) Random atoms: Sampling $\left\{\mathbf{u}_l^0\right\}$ on unit sphere

- 1. Sample with standard normal distribution: $\mathbf{u}_l^0 \sim \mathcal{N} \left(\mathbf{0}, \mathbf{I}_D \right)$.
- 2. Scale to unit length: $\mathbf{u}_l^0 \leftarrow \mathbf{u}_l^0 / \left\| \mathbf{u}_l^0 \right\|_2$.

B) Samples from X:

- 1. $\mathbf{u}_l^0 \leftarrow \mathbf{x}_n$, where $n \sim \mathcal{U}(1, N)$ is sampled uniformly.
- 2. Scale to unit length: $\mathbf{u}_l^0 \leftarrow \mathbf{u}_l^0 / \left\| \mathbf{u}_l^0 \right\|_2$.

C) Fixed overcomplete dictionary, e.g. use overcomplete DCT.

4 ロ ▶ 4 레 ▶ 4 페 ▶ 4 페 사 코 ▶ - 페 메 게 메 메 게 메 게 게 이어 있습니다 23/40

- 8×8 non-overlapping patches
- \triangleright 20 atoms: 19 initialized randomly, 1 constant atom
- $\bullet \ \sigma = 1/200$
- \blacktriangleright 40 iterations

Approximation Dictionary

4 ロ → 4 御 → 4 로 → 4 로 → 24/40 24/40 Iteration: $t = 1$ $t = 1$

Image Coding

Approximation Dictionary

4 ロ → 4 御 → 4 로 → 4 로 → 25 → 25/40 Iteration: $t = 2$ $t = 2$

Image Coding

Approximation Dictionary

4 ロ → 4 御 → 4 로 → 4 로 → 26 원 → 26/40 Iteration: $t = 3$ $t = 3$

Image Coding

Approximation Dictionary

4 ロ → 4 御 → 4 로 → 4 로 → 27/40 27/40 Iteration: $t = 4$ $t = 4$

Image Coding

Approximation Dictionary

Iteration: $t = 5$ $t = 5$

28/40

Approximation Dictionary

4 ロ X 4 메 X 4 프 X 4 로 X - 29 4 29 4 29 4 4 0 Iteration: $t = 10$ $t = 10$

4 ロ ▶ 4 @ ▶ 4 로 ▶ 4 로 ▶ - 로 - 9 9 Q 0 - 30/40 Iteration: $t = 15$ $t = 15$

4 ロ → 4 御 → 4 ミ → 4 ミ → 2 → 9 9 0 → 31/40 Iteration: $t = 20$ $t = 20$

4 ロ → 4 御 → 4 로 → 4 로 → 2 → 9 9 9 9 32/40 Iteration: $t = 25$ $t = 25$

33/40 Iteration: $t = 30$ $t = 30$

Model Based Speech Enhancement

- Setting: Observe additive mixture of speech and interferer signal
- Target: Infer clean speech based on the mixed signal
- Concept: Exploit speech pause to learn interferer dictionary in an adaptive way

Enhancement Pipeline

 \triangleright Transform (FT) signal into feature space using short-time Fourier transform (STFT) and modified discrete cosine transform (MDCT)

-
35/40 → 400 → 400 → 400 → 400 → 35/40 → 35/40

- \blacktriangleright Train speech dictionary $\mathbf{U}^{(s)}$ and interferer dictionary $\mathbf{U}^{(i)}$
- \blacktriangleright Build composite dictionary: $\mathbf{U} = \left[\mathbf{U}^{(s)} \mathbf{U}^{(i)} \right]$

Learning Step

Dictionary learning is performed using the same K-SVD algorithm explained above.

$$
(\mathbf{U}^{\star}, \mathbf{Z}^{\star}) \quad \in \arg\min_{\mathbf{UZ}} \|\mathbf{X} - \mathbf{U} \cdot \mathbf{Z}\|_{F}^{2}
$$

s.t. $\left\|\mathbf{u}_{(:,d)}^{\star}\right\|_{2} = 1$, for all $d = 1, ..., L$.
 $\|\mathbf{Z}^{\star}\|_{0} \leq K$

Learning of source models

- \triangleright Structured speech: pre-train speech model on corpus
- \triangleright Variable interferer: adapt interferer model in speech pauses

Enhancement Pipeline

- Sparse code mixture in composite dictionary by "least angle regression with coherence criterion" (LARC)
- \blacktriangleright Estimate speech: $\mathbf{\hat{x}} = \mathbf{U}^{(s)} \mathbf{z}^{(s)}$
- Apply inverse transfor[ma](#page-35-0)tion (IFT) to ma[p](#page-37-0) $\hat{\mathbf{x}}$ $\hat{\mathbf{x}}$ $\hat{\mathbf{x}}$ b[a](#page-37-0)[c](#page-32-0)[k](#page-33-0) [to](#page-39-0) [ti](#page-8-0)[m](#page-39-0)[e-d](#page-0-0)[om](#page-39-0)ain

37/40

Enhancement Step

Sparse coding of mixture $x = s + i$ in composite dictionary:

$$
\left(\mathbf{z}_{(s)}^{\star}, \mathbf{z}_{(i)}^{\star}\right) \quad \in \arg\min_{\mathbf{z}^{(s)}\mathbf{z}^{(i)}} \left\|\mathbf{X} - \left[\mathbf{U}^{(s)}\mathbf{U}^{(i)}\right] \cdot \left[\mathbf{z}^{(s)}\right]\right\|_2
$$
\ns.t.
$$
\left\|\mathbf{z}^{(s)}\right\|_0 + \left\|\mathbf{z}^{(i)}\right\|_0 \leq K
$$

The enhanced signal is reconstructed using only "speech" coefficients and the "speech" dictionary:

$$
\mathbf{\hat{x}} = \mathbf{U}^{\star}_{(s)} \mathbf{z}^{\star}_{(s)}
$$

4 ロ ▶ 4 @ ▶ 4 로 ▶ 4 로 ▶ - 로 - 90 Q + 38/40

Baseline comparison

Factory noise, +5 dB SIR (signal-to-interferer ratio):

C. D. Sigg, T. Dikk, JMB, IEEE Transactions Audio, Speech, and Language Processing, 20(6), 1698-1712, 2012

◆ロト→伊ト→ミト→ミト 및 9900 39/40

Objective measure: Frequency Weighted Segmental SNR

\blacktriangleright Baselines:

- \triangleright GA: Geometric spectral subtraction
- VQ: Codebook based enhancement

Set-Top Box Application

Enhance sports commentary audio stream:

4 ロ → 4 個 → 4 ミ → 4 ミ → 三 → ラ Q Q → 40/40