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Section 1

Compressive Sensing



Compressive Sensing

» Why should we gather huge amounts of information if we then
compress it anyway and throw away most of it?

> Let's instead compress data while gathering.

» It decreases acquisition time, power consumption and required
storage space.

This idea is called compressive sensing.



Compressive Sensing

When is it important? Photoshooting in space!

» Saving memory and battery power ...

» ... for a camera which is orbiting Mars —
hugely important!

v

Fewer images acquired = less energy
consumed

NASA/JPL/Corby Waste

v

Storage space could also be an issue



Compressive Sensing for MRI

» Highres MRI: patient has to be perfectly still during scanning
» Standard practice: ask patient to stop respiration
» Scanning time becomes critically important!

> Decreasing number of measurements = reduced scan time

Xiaojing Ye (2011)



Compressive Sensing: Concept

» Original signal x € R”, K-sparse in orthonormal basis U
x=Uz, st |zljp=K

» Main idea: acquire set y of M linear combinations of signal =—-
reconstruct signal from these measurements

yp = (Wi, x), k=1,....M
y = Wx = WUz =: Oz, with ® = WU ¢ RMxP

» measurement = linear feature

» if M < D: measured signal y much shorter than x.



Compressive Sensing

i

y = Wx = WUz =: Oz, with ® = WU e RM*P

» Surprisingly given any orthonormal basis U we can obtain a stable
reconstruction for any K-sparse, compressible signal!

» Sufficient conditions:
1. W = Gaussian random projection, i.e. w;; ~ N (0, &)

2. M > cKlog (£), where c is some constant.



Compressive Sensing: Signal Reconstruction
» Recovery of x € RP from measured signal y € RM
= need to find sparse representation z:
y = Wx = WUz = Oz, with © ¢ RM*P

» given z, easily reconstruct x via x = Uz

» finding z ill-posed: more unknowns than equations (M < D)

» Optimization problem

» find sparsest solution s.t. equality holds:

z" € argmin ||z|p, st. y =0z
z

» apply same reconstruction techniques as before:
(1) Convex Optimization or (2) Matching Pursuit



Section 2

Dictionary Learning



Dictionary Learning

Can we work with better and more problem specific dictionaries?



Recap: Dictionary Encoding |

Fixed orthonormal basis:

-Lal b

D x D

» Advantage: efficient coding by matrix multiplication z = UTx

» Disadvantage: only sparse for specific classes of signals

> strong a priori assumptions



Recap: Dictionary Encoding Il

Fixed overcomplete basis:

: U

» Advantage: sparse coding for several signal classes

» Disadvantage: finding sparsest code ...

» may require approximation algorithm (e.g. matching pursuit)

» problematic if dictionary size L and coherence m (U) are large.



Dictionary Encoding IlI

Learning the dictionary:

» Advantage: we adapt a dictionary to signal characteristics
=—> same approximation error achievable with smaller L

» Challenge: we have to solve a matrix factorization problem

X

Q

U : Z

D x N D x L
L x N

» subject to sparsity constraint on Z and

» subject to column/atom norm constraint on U.



Dictionary Adaptation

> 8 x 8 pixel image patches of face images

» 11k examples for training, i.e. X ¢ R64x11000

» Dictionary U € R64*44L (ca. 7 times overcomplete):

Overcomplete DCT  Overcomplete Haar  Learned dictionary
M. Aharon et al., IEEE Transactions on Signal Processing, 54, 4311-4322, 2006



Inpainting Comparison
Reconstruction:

1. One sparse coding step of observed pixels

2. Predict missing pixels from sparse code

M. Aharon et al., IEEE Transactions on Signal Processing, 54, 4311-4322, 2006



Matrix Factorization

(U",Z") € argmin [X — U - Al

> Frobenius norm: ||A |7 = D a?j
» objective not jointly convex in U and Z

» convex in either U or Z (with unique minimum)

Iterative greedy minimization

1. Coding step: Z'"! € argming || X — UtZva,
subject to Z being sparse (non-convex) and U being fixed.

2. Dictionary update step: U't! € argminy ||X — UZt“H?,
subject to ||u|l, =1 forall{=1,...,L and Z being fixed.



Coding Step

VARRNS argmzin HX — UtZH?w

> Column separable residual: |R||% = Zijri%j =2 Hr]||§
» N independent sparse coding steps: foralln=1,...N
zitt € argmin ||z,
z

s.t. %0 — Uz, <o [[xnll,



Dictionary Update |

: 2
Ut ¢ arg min HX — UZH'IHF

» Residual not separable in atoms (columns of U)
» Approximation: update one atom at a time (V)

1. Set U=[u} --- u; ---u}], i.e. fix all atoms except u;.
2. lIsolate Rf, the residual that is due to atom u;.

3. Find uj that minimizes R}, subject to [lu;[|, = 1.



Dictionary Update Il

> Isolate R}: residual due to atom w

X = [uf

e#l
= i

> le is the [-th row of matrix Z.

F



Dictionary Update IlI

How can we find u;?

T. . .
> (zf“) is an outer product, i.e. a matrix

» Approximating residual with rank 1 matrix
2

[ w7

» " Approximately” achieved by SVD of R!:
R =UXV' => o,v]
i
> uj =1 is first left-singular vector.

> ||uf]|, = 1 naturally satisfied.

» also update I-th row of Z (see next slide)



Approximate K-SVD Dictionary Update

Dictionary update by a single power iteration (line 8-9)
1 Input: X = RPN, U = RP*E; 7 = REXN
2: Qutput: Updated dictionary U
3: for! < 1to L do
4: ucn +— 0,
5. N« {n|Z;,, #0,1 <n < N} % active data points
6 R X(:P/\/’) — UZ(:,N) % residual
T
8:  h<+ Rg/|Rg| % power iteration
9: g < R'h
10:  u(y < h % update
11: Z(N) < gT

12: end for

CD Sigg, T Dikk, JM Buhmann, Speech Enhancement using Generative Dictionary Learning, IEEE-TASLP 2012



Initialization

Sensitive to choice of UY: the initial candidate solution is
optimized locally and greedily until no progress possible.

A) Random atoms: Sampling {u?} on unit sphere

1. Sample with standard normal distribution: uf ~ A (0,1p).
2. Scale to unit length: uf < uf/ ||uf||,.

B) Samples from X:

1. u) + x,,, where n ~ U (1, N) is sampled uniformly.
2. Scale to unit length: uY < u?/ Hu?HT

C) Fixed overcomplete dictionary, e.g. use overcomplete DCT.



Example

8 x 8 non-overlapping patches
20 atoms: 19 initialized randomly, 1 constant atom
o =1/200

40 iterations

vV v v v



Example

Image Coding

Approximation Dictionary

Iteration: ¢t =1



Example

Coding

Approximation Dictionary

II.I II. IF..IL

Iteration: ¢ = 2



Example

Coding

Approximation Dictionary

ar e
TR T, Y|

= .

Iteration: ¢ = 3



Example

Image

Iteration:



Example

Image

Iteration:



Example

Image Coding

Approximation Dictionary

Iteration: ¢t = 10



Example

Image

Iteration:



Example

Coding

Approximation Dictionary

Iteration: ¢t = 20



Example

Iteration:



Example

Iteration: ¢t = 30



Model Based Speech Enhancement

Speech Pause Speech Pause
A8 it b bl g 1 D
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l

Interferer Observable Interferer Observable

» Setting: Observe additive mixture of speech and interferer signal
» Target: Infer clean speech based on the mixed signal

» Concept: Exploit speech pause to learn interferer dictionary in an
adaptive way



Enhancement Pipeline
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» Transform (FT) signal into feature space using short-time Fourier
transform (STFT) and modified discrete cosine transform (MDCT)

» Train speech dictionary U(®) and interferer dictionary U®
» Build composite dictionary: U = [U(S)U(i)]



Learning Step

Dictionary learning is performed using the same K-SVD algorithm
explained above.

U, Z* in|X—-U-Z|?

(U™ Z") < argmin| I

s.t.Hu@d)H2 =1, forall d=1,...,L.
1z*l, <K

Learning of source models

» Structured speech: pre-train speech model on corpus

» Variable interferer: adapt interferer model in speech pauses



Enhancement Pipeline
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» Sparse code mixture in composite dictionary by “least angle
regression with coherence criterion” (LARC)

» Estimate speech: % = U()z()
» Apply inverse transformation (IFT) to map % back to time-domain



Enhancement Step

Sparse coding of mixture x = s + i in composite dictionary:

*

(#.2y)  carg min X~ [UDUO]. [z(f))]

o0

<K

s.t. Hz(s)
0

]

The enhanced signal is reconstructed using only “speech”
coefficients and the “speech” dictionary:

)AC = U*(S)Z?s)



Baseline comparison

Factory noise, +5 dB SIR (signal-to-interferer ratio):
[T

ol

Mixture

+2.0dB
fwsSNR
%

GA DL
+0.7dB +3.6dB
fwsSNR

fwsSNR

» Objective measure: Frequency Weighted Segmental SNR
> Baselines:

» GA: Geometric spectral subtraction
» VQ: Codebook based enhancement

C. D. Sigg, T. Dikk, JMB, IEEE Transactions Audio, Speech, and Language Processing, 20(6), 1698-1712, 2012
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Set-Top Box Application

Enhance sports commentary audio stream:

Q>
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