Computational Intelligence Laboratory Lecture 10 Dictionary Learning

Thomas Hofmann

ETH Zurich - cil.inf.ethz.ch

May 15, 2020

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�� 1/40

Section 1

Compressive Sensing

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Compressive Sensing

- Why should we gather huge amounts of information if we then compress it anyway and throw away most of it?
- Let's instead compress data while gathering.
- It decreases acquisition time, power consumption and required storage space.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

This idea is called **compressive sensing**.

Compressive Sensing

When is it important? Photoshooting in space!

- Saving memory and battery power ...
- ... for a camera which is orbiting Mars hugely important!
- ▶ Fewer images acquired ⇒ less energy consumed
- Storage space could also be an issue

NASA/JPL/Corby Waste

<ロ> < @ > < E > < E > E の Q · 4/40

Compressive Sensing for MRI

- Highres MRI: patient has to be perfectly still during scanning
- Standard practice: ask patient to stop respiration
- Scanning time becomes critically important!
- Decreasing number of measurements \implies reduced scan time

Xiaojing Ye (2011)

Compressive Sensing: Concept

▶ Original signal $\mathbf{x} \in \mathbb{R}^{D}$, *K*-sparse in orthonormal basis U

$$\mathbf{x} = \mathbf{U}\mathbf{z}, \quad \text{s.t.} \quad \|\mathbf{z}\|_0 = K$$

► Main idea: acquire set y of M linear combinations of signal ⇒ reconstruct signal from these measurements

$$y_k = \langle \mathbf{w}_k, \mathbf{x} \rangle, \quad k = 1, \dots, M$$

 $\mathbf{y} = \mathbf{W}\mathbf{x} = \mathbf{W}\mathbf{U}\mathbf{z} =: \Theta \mathbf{z}, \text{ with } \Theta = \mathbf{W}\mathbf{U} \in \mathbb{R}^{M \times D}$

- measurement = linear feature
- if $M \ll D$: measured signal y much shorter than x.

Compressive Sensing

 $\mathbf{y} = \mathbf{W}\mathbf{x} = \mathbf{W}\mathbf{U}\mathbf{z} =: \Theta \mathbf{z}, \text{ with } \Theta = \mathbf{W}\mathbf{U} \in \mathbb{R}^{M \times D}$

- Surprisingly given any orthonormal basis U we can obtain a stable reconstruction for any K-sparse, compressible signal!
- Sufficient conditions:
 - 1. $\mathbf{W} = \text{Gaussian random projection, i.e. } w_{ij} \sim \mathcal{N}(0, \frac{1}{D})$
 - 2. $M \ge cK \log \left(\frac{D}{K}\right)$, where c is some constant.

Compressive Sensing: Signal Reconstruction

• Recovery of $\mathbf{x} \in \mathbb{R}^D$ from measured signal $\mathbf{y} \in \mathbb{R}^M$ \equiv need to find sparse representation \mathbf{z} :

$$\mathbf{y} = \mathbf{W}\mathbf{x} = \mathbf{W}\mathbf{U}\mathbf{z} = \Theta\mathbf{z}, \text{ with } \Theta \in \mathbb{R}^{M \times D}$$

- \blacktriangleright given z, easily reconstruct x via $\mathbf{x} = \mathbf{U}\mathbf{z}$
- finding z ill-posed: more unknowns than equations $(M \ll D)$
- Optimization problem
 - find sparsest solution s.t. equality holds:

$$\mathbf{z}^* \in \operatorname*{arg\,min}_{\mathbf{z}} \|\mathbf{z}\|_0, \ \text{ s.t. } \mathbf{y} = \Theta \mathbf{z}$$

apply same reconstruction techniques as before:
 (1) Convex Optimization or (2) Matching Pursuit

Section 2

Dictionary Learning

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Dictionary Learning

Can we work with better and more problem specific dictionaries?

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = りへで 10/40

Recap: Dictionary Encoding I

Fixed orthonormal basis:

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ の へ · 11/40

- Advantage: efficient coding by matrix multiplication $\mathbf{z} = \mathbf{U}^{\top} \mathbf{x}$
- Disadvantage: only sparse for specific classes of signals
 - strong a priori assumptions

Recap: Dictionary Encoding II

Fixed overcomplete basis:

- Advantage: sparse coding for several signal classes
- Disadvantage: finding sparsest code ...
 - may require approximation algorithm (e.g. matching pursuit)
 - problematic if dictionary size L and coherence $m(\mathbf{U})$ are large.

Dictionary Encoding III

Learning the dictionary:

- Advantage: we adapt a dictionary to signal characteristics
 same approximation error achievable with smaller L
- Challenge: we have to solve a matrix factorization problem

<ロト < 回 ト < 三 ト < 三 ト 三 の へ で 13/40

- ${\scriptstyle \blacktriangleright}$ subject to sparsity constraint on ${\bf Z}$ and
- subject to column/atom norm constraint on U.

Dictionary Adaptation

- 8×8 pixel image patches of face images
- ▶ 11k examples for training, i.e. $\mathbf{X} \in \mathbb{R}^{64 \times 11000}$
- Dictionary $\mathbf{U} \in \mathbb{R}^{64 \times 441}$ (ca. 7 times overcomplete):

Overcomplete DCT Overcomplete Haar Learned dictionary M. Aharon et al., IEEE Transactions on Signal Processing, 54, 4311-4322, 2006

Inpainting Comparison

Reconstruction:

- 1. One sparse coding step of observed pixels
- 2. Predict missing pixels from sparse code

Matrix Factorization

$$(\mathbf{U}^{\star}, \mathbf{Z}^{\star}) \in \arg\min_{\mathbf{U}, \mathbf{Z}} \|\mathbf{X} - \mathbf{U} \cdot \mathbf{Z}\|_{F}^{2}$$

- Frobenius norm: $\|\mathbf{A}\|_F^2 = \sum_{i,j} a_{i,j}^2$
- \blacktriangleright objective *not* jointly convex in ${\bf U}$ and ${\bf Z}$
- convex in either U or Z (with unique minimum)

Iterative greedy minimization

- 1. Coding step: $\mathbf{Z}^{t+1} \in \arg \min_{\mathbf{Z}} \|\mathbf{X} \mathbf{U}^t \mathbf{Z}\|_F^2$, subject to \mathbf{Z} being sparse (non-convex) and \mathbf{U} being fixed.
- 2. Dictionary update step: $\mathbf{U}^{t+1} \in \arg \min_{\mathbf{U}} \|\mathbf{X} \mathbf{U}\mathbf{Z}^{t+1}\|_{F}^{2}$, subject to $\|\mathbf{u}_{l}\|_{2} = 1$ for all $l = 1, \dots, L$ and \mathbf{Z} being fixed.

Coding Step

$$\mathbf{Z}^{t+1} \in \arg\min_{\mathbf{Z}} \left\| \mathbf{X} - \mathbf{U}^t \mathbf{Z} \right\|_F^2$$

- Column separable residual: $\|\mathbf{R}\|_F^2 = \sum_{i,j} r_{i,j}^2 = \sum_j \|\mathbf{r}_j\|_2^2$
- ▶ N independent sparse coding steps: for all n = 1, ..., N

$$\begin{aligned} \mathbf{z}_n^{t+1} &\in & \arg\min_{\mathbf{z}} \|\mathbf{z}\|_0 \\ \text{s.t.} & & \left\|\mathbf{x}_n - \mathbf{U}^t \mathbf{z}\right\|_2 \leq \sigma \cdot \|\mathbf{x}_n\|_2 \end{aligned}$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Dictionary Update I

$$\mathbf{U}^{t+1} \in \arg\min_{\mathbf{U}} \left\| \mathbf{X} - \mathbf{U}\mathbf{Z}^{t+1} \right\|_{F}^{2}$$

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ 9 へ C 18/40

- Residual not separable in atoms (columns of U)
- Approximation: update one atom at a time $(\forall l)$
 - 1. Set $\mathbf{U} = [\mathbf{u}_1^t \cdots \mathbf{u}_l \cdots \mathbf{u}_L^t]$, i.e. fix all atoms except \mathbf{u}_l .
 - 2. Isolate \mathbf{R}_l^t , the residual that is due to atom \mathbf{u}_l .
 - 3. Find \mathbf{u}_l^* that minimizes \mathbf{R}_l^t , subject to $\|\mathbf{u}_l^*\|_2 = 1$.

Dictionary Update II

• Isolate \mathbf{R}_l^t : residual due to atom \mathbf{u}_l

$$\begin{aligned} & \left\| \mathbf{X} - \left[\mathbf{u}_{1}^{t} \cdots \mathbf{u}_{l} \cdots \mathbf{u}_{L}^{t} \right] \cdot \mathbf{Z}^{t+1} \right\|_{F}^{2} \\ &= \left\| \mathbf{X} - \left(\sum_{e \neq l} \mathbf{u}_{e}^{t} \left(\mathbf{z}_{e}^{t+1} \right)^{\top} + \mathbf{u}_{l} \left(\mathbf{z}_{l}^{t+1} \right)^{\top} \right) \right\|_{F}^{2} \\ &= \left\| \mathbf{R}_{l}^{t} - \mathbf{u}_{l} \left(\mathbf{z}_{l}^{t+1} \right)^{\top} \right\|_{F}^{2} \end{aligned}$$

< □ ▶ < 圕 ▶ < ≧ ▶ < ≧ ▶ Ξ ♪ ♡ < ♡ 19/40

• \mathbf{z}_l^{\top} is the *l*-th row of matrix \mathbf{Z} .

Dictionary Update III

How can we find \mathbf{u}_l^* ?

- $\mathbf{u}_l \left(\mathbf{z}_l^{t+1}
 ight)^ op$ is an outer product, i.e. a matrix
- Approximating residual with rank 1 matrix

$$\left\| \mathbf{R}_{l}^{t} - \mathbf{u}_{l} \left(\mathbf{z}_{l}^{t+1}
ight)^{ op}
ight\|_{F}^{2}$$

• "Approximately" achieved by SVD of \mathbf{R}_l^t :

$$\mathbf{R}_l^t = ilde{\mathbf{U}} \mathbf{\Sigma} ilde{\mathbf{V}}^ op = \sum_i \sigma_i ilde{\mathbf{u}}_i ilde{\mathbf{v}}_i^ op$$

- $\mathbf{u}_l^* = \tilde{\mathbf{u}}_1$ is first left-singular vector.
- $\|\mathbf{u}_l^*\|_2 = 1$ naturally satisfied.
- also update *l*-th row of Z (see next slide)

Approximate K-SVD Dictionary Update

Dictionary update by a single power iteration (line 8-9)

1: Input:
$$\mathbf{X} = \mathbb{R}^{D \times N}$$
; $\mathbf{U} = \mathbb{R}^{D \times L}$; $\mathbf{Z} = \mathbb{R}^{L \times N}$

- 2: Output: Updated dictionary U
- 3: for $l \leftarrow 1$ to L do

4:
$$\mathbf{u}_{(:,l)} \leftarrow \mathbf{0}$$
,
5: $\mathcal{N} \leftarrow \{n | Z_{ln} \neq 0, 1 \le n \le N\}$ % active data points

6:
$$\mathbf{R} \leftarrow \mathbf{X}_{(:,\mathcal{N})} - \mathbf{U}\mathbf{Z}_{(:,\mathcal{N})}$$
 % residual

7:
$$\mathbf{g} \leftarrow \mathbf{z}_{(l,\mathcal{N})}^{\top}$$

8:
$$\mathbf{h} \leftarrow \mathbf{Rg} / \|\mathbf{Rg}\|$$
 % power iteration
9: $\mathbf{g} \leftarrow \mathbf{R}^\top \mathbf{h}$

- $\begin{array}{ll} \text{10:} & \mathbf{u}_{(:,l)} \leftarrow \mathbf{h} \ \text{\%} \ \text{update} \\ \text{11:} & \mathbf{z}_{(l,\mathcal{N})} \leftarrow \mathbf{g}^\top \end{array}$

12: end for

CD Sigg, T Dikk, JM Buhmann, Speech Enhancement using Generative Dictionary Learning, IEEE-TASLP 2012

Initialization

Sensitive to choice of U^0 : the initial candidate solution is optimized locally and greedily until no progress possible.

A) Random atoms: Sampling $\{\mathbf{u}_l^0\}$ on unit sphere

- 1. Sample with standard normal distribution: $\mathbf{u}_{l}^{0} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_{D})$.
- 2. Scale to unit length: $\mathbf{u}_l^0 \leftarrow \mathbf{u}_l^0 / \left\| \mathbf{u}_l^0 \right\|_2$.

B) Samples from X:

- 1. $\mathbf{u}_{l}^{0} \leftarrow \mathbf{x}_{n}$, where $n \sim \mathcal{U}(1, N)$ is sampled uniformly.
- 2. Scale to unit length: $\mathbf{u}_l^0 \leftarrow \mathbf{u}_l^0 / \left\| \mathbf{u}_l^0 \right\|_2$.

C) Fixed overcomplete dictionary, e.g. use overcomplete DCT.

<ロ ト < 団 ト < 臣 ト < 臣 ト 臣 の Q C 23/40

- ▶ 8×8 non-overlapping patches
- > 20 atoms: 19 initialized randomly, 1 constant atom
- $\blacktriangleright \ \sigma = 1/200$
- 40 iterations

Image

Dictionary

Image

Dictionary

Image

Coding

Approximation

Dictionary

Image

Approximation

Dictionary

Image

Coding

Approximation

Dictionary

Image

Dictionary

Image

Approximation

Dictionary

Image

Approximation

Dictionary

Image

Approximation

Dictionary

Image

Dictionary

Model Based Speech Enhancement

- ► Setting: Observe additive mixture of speech and interferer signal
- Target: Infer clean speech based on the mixed signal
- Concept: Exploit speech pause to learn interferer dictionary in an adaptive way

Enhancement Pipeline

- Transform (FT) signal into feature space using short-time Fourier transform (STFT) and modified discrete cosine transform (MDCT)
- Train speech dictionary $\mathbf{U}^{(s)}$ and interferer dictionary $\mathbf{U}^{(i)}$
- ► Build composite dictionary: $\mathbf{U} = \begin{bmatrix} \mathbf{U}^{(s)} \mathbf{U}^{(i)} \end{bmatrix}$

Learning Step

Dictionary learning is performed using the same K-SVD algorithm explained above.

$$\begin{aligned} (\mathbf{U}^{\star}, \mathbf{Z}^{\star}) &\in \arg\min_{\mathbf{U}\mathbf{Z}} \|\mathbf{X} - \mathbf{U} \cdot \mathbf{Z}\|_{F}^{2} \\ \text{s.t.} \left\| \mathbf{u}_{(:,d)}^{\star} \right\|_{2} &= 1, \quad \text{for all} \quad d = 1, \dots, L. \\ \|\mathbf{Z}^{\star}\|_{0} &\leq K \end{aligned}$$

Learning of source models

- Structured speech: pre-train speech model on corpus
- Variable interferer: adapt interferer model in speech pauses

Enhancement Pipeline

- Sparse code mixture in composite dictionary by "least angle regression with coherence criterion" (LARC)
- Estimate speech: $\mathbf{\hat{x}} = \mathbf{U}^{(s)}\mathbf{z}^{(s)}$
- Apply inverse transformation (IFT) to map $\hat{\mathbf{x}}$ back to time-domain

Enhancement Step

Sparse coding of mixture x = s + i in composite dictionary:

$$\begin{aligned} \left(\mathbf{z}_{(s)}^{\star}, \mathbf{z}_{(i)}^{\star} \right) &\in \arg\min_{\mathbf{z}^{(s)}\mathbf{z}^{(i)}} \left\| \mathbf{X} - \left[\mathbf{U}^{(s)}\mathbf{U}^{(i)} \right] \cdot \begin{bmatrix} \mathbf{z}^{(s)} \\ \mathbf{z}^{(i)} \end{bmatrix} \right\|_{2} \\ \text{s.t.} & \left\| \mathbf{z}^{(s)} \right\|_{0} + \left\| \mathbf{z}^{(i)} \right\|_{0} \le K \end{aligned}$$

The enhanced signal is reconstructed using only "*speech*" coefficients and the "*speech*" dictionary:

$$\mathbf{\hat{x}} = \mathbf{U}^{\star}{}_{(s)}\mathbf{z}^{\star}_{(s)}$$

<□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

Baseline comparison

Factory noise, +5 dB SIR (signal-to-interferer ratio):

C. D. Sigg, T. Dikk, JMB, IEEE Transactions Audio, Speech, and Language Processing, 20(6), 1698-1712, 2012

<ロト < 回 ト < 三 ト < 三 ト 三 の < で 39/40

- Objective measure: Frequency Weighted Segmental SNR
- Baselines:
 - ► GA: Geometric spectral subtraction
 - VQ: Codebook based enhancement

Set-Top Box Application

Enhance sports commentary audio stream:

4 ロ ト 4 日 ト 4 王 ト 4 王 ト 王 の 9 9 40/40