
Computational Intelligence Laboratory

Lecture 10

Dictionary Learning

Thomas Hofmann

ETH Zurich – cil.inf.ethz.ch

May 15, 2020

1/40

cil.inf.ethz.ch

2/40

Section 1

Compressive Sensing

3/40

Compressive Sensing

I Why should we gather huge amounts of information if we then
compress it anyway and throw away most of it?

I Let’s instead compress data while gathering.

I It decreases acquisition time, power consumption and required
storage space.

This idea is called compressive sensing.

4/40

Compressive Sensing

When is it important? Photoshooting in space!

I Saving memory and battery power ...

I ... for a camera which is orbiting Mars –
hugely important!

I Fewer images acquired =⇒ less energy
consumed

I Storage space could also be an issue
NASA/JPL/Corby Waste

5/40

Compressive Sensing for MRI

I Highres MRI: patient has to be perfectly still during scanning

I Standard practice: ask patient to stop respiration

I Scanning time becomes critically important!

I Decreasing number of measurements =⇒ reduced scan time

Xiaojing Ye (2011)

6/40

Compressive Sensing: Concept

I Original signal x ∈ RD, K-sparse in orthonormal basis U

x = Uz, s.t. ‖z‖0 = K

I Main idea: acquire set y of M linear combinations of signal =⇒
reconstruct signal from these measurements

yk = 〈wk,x〉, k = 1, . . . ,M

y = Wx = WUz =: Θz, with Θ = WU ∈ RM×D

I measurement = linear feature

I if M � D: measured signal y much shorter than x.

7/40

Compressive Sensing

y = Wx = WUz =: Θz, with Θ = WU ∈ RM×D

I Surprisingly given any orthonormal basis U we can obtain a stable
reconstruction for any K-sparse, compressible signal!

I Sufficient conditions:

1. W = Gaussian random projection, i.e. wij ∼ N (0, 1
D)

2. M ≥ cK log
(
D
K

)
, where c is some constant.

8/40

Compressive Sensing: Signal Reconstruction

I Recovery of x ∈ RD from measured signal y ∈ RM

≡ need to find sparse representation z:

y = Wx = WUz = Θz, with Θ ∈ RM×D

I given z, easily reconstruct x via x = Uz

I finding z ill-posed: more unknowns than equations (M � D)

I Optimization problem

I find sparsest solution s.t. equality holds:

z∗ ∈ arg min
z
‖z‖0, s.t. y = Θz

I apply same reconstruction techniques as before:

(1) Convex Optimization or (2) Matching Pursuit

9/40

Section 2

Dictionary Learning

10/40

Dictionary Learning

Can we work with better and more problem specific dictionaries?

11/40

Recap: Dictionary Encoding I

Fixed orthonormal basis:

x = U

D × D

· z

I Advantage: efficient coding by matrix multiplication z = U>x

I Disadvantage: only sparse for specific classes of signals

I strong a priori assumptions

12/40

Recap: Dictionary Encoding II

Fixed overcomplete basis:

x = U

D × L

· z

I Advantage: sparse coding for several signal classes

I Disadvantage: finding sparsest code ...

I may require approximation algorithm (e.g. matching pursuit)

I problematic if dictionary size L and coherence m (U) are large.

13/40

Dictionary Encoding III

Learning the dictionary:

I Advantage: we adapt a dictionary to signal characteristics
=⇒ same approximation error achievable with smaller L

I Challenge: we have to solve a matrix factorization problem

X

D × N

≈ U

D × L

· Z

L × N

I subject to sparsity constraint on Z and

I subject to column/atom norm constraint on U.

14/40

Dictionary Adaptation

I 8× 8 pixel image patches of face images

I 11k examples for training, i.e. X ∈ R64×11000

I Dictionary U ∈ R64×441 (ca. 7 times overcomplete):

AHARON et al.: -SVD: ALGORITHM FOR DESIGNING OVERCOMPLETE DICTIONARIES 4319

Fig. 3. Synthetic results: for each of the tested algorithms and for each noise
level, 50 trials were conducted and their results sorted. The graph labels repre-
sent the mean number of detected atoms (out of 50) over the ordered tests in
groups of ten experiments.

and initializing in the same way. We executed the MOD algo-
rithm for a total number of 80 iterations. We also executed the
MAP-based algorithm of Kreutz-Delgado et al. [37].2 This al-
gorithm was executed as is, therefore using FOCUSS as its de-
composition method. Here, again, a maximum of 80 iterations
were allowed.

D. Results

The computed dictionary was compared against the known
generating dictionary. This comparison was done by sweeping
through the columns of the generating dictionary and finding
the closest column (in distance) in the computed dictionary,
measuring the distance via

(25)

where is a generating dictionary atom and is its corre-
sponding element in the recovered dictionary. A distance less
than 0.01 was considered a success. All trials were repeated
50 times, and the number of successes in each trial was com-
puted. Fig. 3 displays the results for the three algorithms for
noise levels of 10, 20, and 30 dB and for the noiseless case.

We should note that for different dictionary size (e.g.,
20 30) and with more executed iterations, the MAP-based
algorithm improves and gets closer to the -SVD detection
rates.

VI. APPLICATIONS TO IMAGE PROCESSING—PRELIMINARY

RESULTS

We carried out several experiments on natural image data,
trying to show the practicality of the proposed algorithm and the
general sparse coding theme. We should emphasize that our tests
here come only to prove the concept of using such dictionaries
with sparse representations. Further work is required to fully

2The authors of [37] have generously shared their software with us.

Fig. 4. A collection of 500 random blocks that were used for training, sorted
by their variance.

(a) (b) (c)

Fig. 5. (a) The learned dictionary. Its elements are sorted in an ascending order
of their variance and stretched to maximal range for display purposes. (b) The
overcomplete separable Haar dictionary and (c) the overcomplete DCT dictio-
nary are used for comparison.

Fig. 6. The root mean square error for 594 new blocks with missing pixels
using the learned dictionary, overcomplete Haar dictionary, and overcomplete
DCT dictionary.

deploy the proposed techniques in large-scale image-processing
applications.

1) Training Data: The training data were constructed as a
set of 11 000 examples of block patches of size 8 8 pixels,
taken from a database of face images (in various locations). A
random collection of 500 such blocks, sorted by their variance,
is presented in Fig. 4.

2) Removal of the DC: Working with real image data, we
preferred that all dictionary elements except one have a zero
mean. The same measure was practiced in previous work [23].
For this purpose, the first dictionary element, denoted as the DC,
was set to include a constant value in all its entries and was not
changed afterwards. The DC takes part in all representations,
and as a result, all other dictionary elements remain with zero
mean during all iterations.

3) Running the -SVD: We applied the -SVD, training a
dictionary of size 64 441. The choice came from
our attempt to compare the outcome to the overcomplete Haar
dictionary of the same size (see the following section). The coef-
ficients were computed using OMP with a fixed number of coef-

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 26, 2009 at 11:04 from IEEE Xplore. Restrictions apply.

AHARON et al.: -SVD: ALGORITHM FOR DESIGNING OVERCOMPLETE DICTIONARIES 4319

Fig. 3. Synthetic results: for each of the tested algorithms and for each noise
level, 50 trials were conducted and their results sorted. The graph labels repre-
sent the mean number of detected atoms (out of 50) over the ordered tests in
groups of ten experiments.

and initializing in the same way. We executed the MOD algo-
rithm for a total number of 80 iterations. We also executed the
MAP-based algorithm of Kreutz-Delgado et al. [37].2 This al-
gorithm was executed as is, therefore using FOCUSS as its de-
composition method. Here, again, a maximum of 80 iterations
were allowed.

D. Results

The computed dictionary was compared against the known
generating dictionary. This comparison was done by sweeping
through the columns of the generating dictionary and finding
the closest column (in distance) in the computed dictionary,
measuring the distance via

(25)

where is a generating dictionary atom and is its corre-
sponding element in the recovered dictionary. A distance less
than 0.01 was considered a success. All trials were repeated
50 times, and the number of successes in each trial was com-
puted. Fig. 3 displays the results for the three algorithms for
noise levels of 10, 20, and 30 dB and for the noiseless case.

We should note that for different dictionary size (e.g.,
20 30) and with more executed iterations, the MAP-based
algorithm improves and gets closer to the -SVD detection
rates.

VI. APPLICATIONS TO IMAGE PROCESSING—PRELIMINARY

RESULTS

We carried out several experiments on natural image data,
trying to show the practicality of the proposed algorithm and the
general sparse coding theme. We should emphasize that our tests
here come only to prove the concept of using such dictionaries
with sparse representations. Further work is required to fully

2The authors of [37] have generously shared their software with us.

Fig. 4. A collection of 500 random blocks that were used for training, sorted
by their variance.

(a) (b) (c)

Fig. 5. (a) The learned dictionary. Its elements are sorted in an ascending order
of their variance and stretched to maximal range for display purposes. (b) The
overcomplete separable Haar dictionary and (c) the overcomplete DCT dictio-
nary are used for comparison.

Fig. 6. The root mean square error for 594 new blocks with missing pixels
using the learned dictionary, overcomplete Haar dictionary, and overcomplete
DCT dictionary.

deploy the proposed techniques in large-scale image-processing
applications.

1) Training Data: The training data were constructed as a
set of 11 000 examples of block patches of size 8 8 pixels,
taken from a database of face images (in various locations). A
random collection of 500 such blocks, sorted by their variance,
is presented in Fig. 4.

2) Removal of the DC: Working with real image data, we
preferred that all dictionary elements except one have a zero
mean. The same measure was practiced in previous work [23].
For this purpose, the first dictionary element, denoted as the DC,
was set to include a constant value in all its entries and was not
changed afterwards. The DC takes part in all representations,
and as a result, all other dictionary elements remain with zero
mean during all iterations.

3) Running the -SVD: We applied the -SVD, training a
dictionary of size 64 441. The choice came from
our attempt to compare the outcome to the overcomplete Haar
dictionary of the same size (see the following section). The coef-
ficients were computed using OMP with a fixed number of coef-

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 26, 2009 at 11:04 from IEEE Xplore. Restrictions apply.

AHARON et al.: -SVD: ALGORITHM FOR DESIGNING OVERCOMPLETE DICTIONARIES 4319

Fig. 3. Synthetic results: for each of the tested algorithms and for each noise
level, 50 trials were conducted and their results sorted. The graph labels repre-
sent the mean number of detected atoms (out of 50) over the ordered tests in
groups of ten experiments.

and initializing in the same way. We executed the MOD algo-
rithm for a total number of 80 iterations. We also executed the
MAP-based algorithm of Kreutz-Delgado et al. [37].2 This al-
gorithm was executed as is, therefore using FOCUSS as its de-
composition method. Here, again, a maximum of 80 iterations
were allowed.

D. Results

The computed dictionary was compared against the known
generating dictionary. This comparison was done by sweeping
through the columns of the generating dictionary and finding
the closest column (in distance) in the computed dictionary,
measuring the distance via

(25)

where is a generating dictionary atom and is its corre-
sponding element in the recovered dictionary. A distance less
than 0.01 was considered a success. All trials were repeated
50 times, and the number of successes in each trial was com-
puted. Fig. 3 displays the results for the three algorithms for
noise levels of 10, 20, and 30 dB and for the noiseless case.

We should note that for different dictionary size (e.g.,
20 30) and with more executed iterations, the MAP-based
algorithm improves and gets closer to the -SVD detection
rates.

VI. APPLICATIONS TO IMAGE PROCESSING—PRELIMINARY

RESULTS

We carried out several experiments on natural image data,
trying to show the practicality of the proposed algorithm and the
general sparse coding theme. We should emphasize that our tests
here come only to prove the concept of using such dictionaries
with sparse representations. Further work is required to fully

2The authors of [37] have generously shared their software with us.

Fig. 4. A collection of 500 random blocks that were used for training, sorted
by their variance.

(a) (b) (c)

Fig. 5. (a) The learned dictionary. Its elements are sorted in an ascending order
of their variance and stretched to maximal range for display purposes. (b) The
overcomplete separable Haar dictionary and (c) the overcomplete DCT dictio-
nary are used for comparison.

Fig. 6. The root mean square error for 594 new blocks with missing pixels
using the learned dictionary, overcomplete Haar dictionary, and overcomplete
DCT dictionary.

deploy the proposed techniques in large-scale image-processing
applications.

1) Training Data: The training data were constructed as a
set of 11 000 examples of block patches of size 8 8 pixels,
taken from a database of face images (in various locations). A
random collection of 500 such blocks, sorted by their variance,
is presented in Fig. 4.

2) Removal of the DC: Working with real image data, we
preferred that all dictionary elements except one have a zero
mean. The same measure was practiced in previous work [23].
For this purpose, the first dictionary element, denoted as the DC,
was set to include a constant value in all its entries and was not
changed afterwards. The DC takes part in all representations,
and as a result, all other dictionary elements remain with zero
mean during all iterations.

3) Running the -SVD: We applied the -SVD, training a
dictionary of size 64 441. The choice came from
our attempt to compare the outcome to the overcomplete Haar
dictionary of the same size (see the following section). The coef-
ficients were computed using OMP with a fixed number of coef-

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 26, 2009 at 11:04 from IEEE Xplore. Restrictions apply.

Overcomplete DCT Overcomplete Haar Learned dictionary
M. Aharon et al., IEEE Transactions on Signal Processing, 54, 4311-4322, 2006

15/40

Inpainting Comparison

Reconstruction:

1. One sparse coding step of observed pixels

2. Predict missing pixels from sparse code

M. Aharon et al., IEEE Transactions on Signal Processing, 54, 4311-4322, 2006

16/40

Matrix Factorization

(U?,Z?) ∈ arg min
U,Z
‖X−U · Z‖2F

I Frobenius norm: ‖A‖2F =
∑

i,j a
2
i,j

I objective not jointly convex in U and Z

I convex in either U or Z (with unique minimum)

Iterative greedy minimization

1. Coding step: Zt+1 ∈ arg minZ

∥∥X−UtZ
∥∥2
F

,

subject to Z being sparse (non-convex) and U being fixed.

2. Dictionary update step: Ut+1 ∈ arg minU

∥∥X−UZt+1
∥∥2
F

,

subject to ‖ul‖2 = 1 for all l = 1, . . . , L and Z being fixed.

17/40

Coding Step

Zt+1 ∈ arg min
Z

∥∥X−UtZ
∥∥2
F

I Column separable residual: ‖R‖2F =
∑

i,j r
2
i,j =

∑
j ‖rj‖

2
2

I N independent sparse coding steps: for all n = 1, . . . N

zt+1
n ∈ arg min

z
‖z‖0

s.t.
∥∥xn −Utz

∥∥
2
≤ σ · ‖xn‖2

18/40

Dictionary Update I

Ut+1 ∈ arg min
U

∥∥X−UZt+1
∥∥2
F

I Residual not separable in atoms (columns of U)

I Approximation: update one atom at a time (∀l)

1. Set U = [ut
1 · · · ul · · ·ut

L], i.e. fix all atoms except ul.

2. Isolate Rt
l , the residual that is due to atom ul.

3. Find u∗l that minimizes Rt
l , subject to ‖u∗l ‖2 = 1.

19/40

Dictionary Update II

I Isolate Rt
l : residual due to atom ul∥∥X− [ut

1 · · · ul · · ·ut
L

]
· Zt+1

∥∥2
F

=

∥∥∥∥∥∥X−
∑

e 6=l

ut
e

(
zt+1
e

)>
+ ul

(
zt+1
l

)>∥∥∥∥∥∥
2

F

=
∥∥∥Rt

l − ul

(
zt+1
l

)>∥∥∥2
F

I z>l is the l-th row of matrix Z.

20/40

Dictionary Update III

How can we find u∗l ?

I ul

(
zt+1
l

)>
is an outer product, i.e. a matrix

I Approximating residual with rank 1 matrix∥∥∥Rt
l − ul

(
zt+1
l

)>∥∥∥2
F

I ”Approximately” achieved by SVD of Rt
l :

Rt
l = ŨΣṼ> =

∑
i

σiũiṽ
>
i

I u∗l = ũ1 is first left-singular vector.

I ‖u∗l ‖2 = 1 naturally satisfied.

I also update l-th row of Z (see next slide)

21/40

Approximate K-SVD Dictionary Update

Dictionary update by a single power iteration (line 8-9)

1: Input: X = RD×N ; U = RD×L; Z = RL×N

2: Output: Updated dictionary U
3: for l ← 1 to L do
4: u(:,l) ← 0,
5: N ← {n|Zln 6= 0, 1 ≤ n ≤ N} % active data points
6: R← X(:,N) −UZ(:,N) % residual

7: g← z>(l,N)

8: h← Rg/‖Rg‖ % power iteration
9: g← R>h

10: u(:,l) ← h % update

11: z(l,N) ← g>

12: end for

CD Sigg, T Dikk, JM Buhmann, Speech Enhancement using Generative Dictionary Learning, IEEE-TASLP 2012

22/40

Initialization

Sensitive to choice of U0: the initial candidate solution is
optimized locally and greedily until no progress possible.

A) Random atoms: Sampling
{
u0
l

}
on unit sphere

1. Sample with standard normal distribution: u0
l ∼ N (0, ID).

2. Scale to unit length: u0
l ← u0

l /
∥∥u0

l

∥∥
2
.

B) Samples from X:

1. u0
l ← xn, where n ∼ U (1, N) is sampled uniformly.

2. Scale to unit length: u0
l ← u0

l /
∥∥u0

l

∥∥
2
.

C) Fixed overcomplete dictionary, e.g. use overcomplete DCT.

23/40

Example

I 8× 8 non-overlapping patches

I 20 atoms: 19 initialized randomly, 1 constant atom

I σ = 1/200

I 40 iterations

24/40

Example

Image Coding

Approximation Dictionary

Iteration: t = 1

25/40

Example

Image Coding

Approximation Dictionary

Iteration: t = 2

26/40

Example

Image Coding

Approximation Dictionary

Iteration: t = 3

27/40

Example

Image Coding

Approximation Dictionary

Iteration: t = 4

28/40

Example

Image Coding

Approximation Dictionary

Iteration: t = 5

29/40

Example

Image Coding

Approximation Dictionary

Iteration: t = 10

30/40

Example

Image Coding

Approximation Dictionary

Iteration: t = 15

31/40

Example

Image Coding

Approximation Dictionary

Iteration: t = 20

32/40

Example

Image Coding

Approximation Dictionary

Iteration: t = 25

33/40

Example

Image Coding

Approximation Dictionary

Iteration: t = 30

34/40

Model Based Speech Enhancement

I Setting: Observe additive mixture of speech and interferer signal

I Target: Infer clean speech based on the mixed signal

I Concept: Exploit speech pause to learn interferer dictionary in an
adaptive way

35/40

Enhancement Pipeline

I Transform (FT) signal into feature space using short-time Fourier
transform (STFT) and modified discrete cosine transform (MDCT)

I Train speech dictionary U(s) and interferer dictionary U(i)

I Build composite dictionary: U =
[
U(s)U(i)

]

36/40

Learning Step

Dictionary learning is performed using the same K-SVD algorithm
explained above.

(U?,Z?) ∈ arg min
UZ
‖X−U · Z‖2F

s.t.
∥∥∥u?

(:,d)

∥∥∥
2

= 1, for all d = 1, . . . , L.

‖Z?‖0 ≤ K

Learning of source models

I Structured speech: pre-train speech model on corpus

I Variable interferer: adapt interferer model in speech pauses

37/40

Enhancement Pipeline

I Sparse code mixture in composite dictionary by “least angle
regression with coherence criterion” (LARC)

I Estimate speech: x̂ = U(s)z(s)

I Apply inverse transformation (IFT) to map x̂ back to time-domain

38/40

Enhancement Step

Sparse coding of mixture x = s+ i in composite dictionary:

(
z?(s), z

?
(i)

)
∈ arg min

z(s)z(i)

∥∥∥∥X− [U(s)U(i)
]
·
[
z(s)

z(i)

]∥∥∥∥
2

s.t.
∥∥∥z(s)∥∥∥

0
+
∥∥∥z(i)∥∥∥

0
≤ K

The enhanced signal is reconstructed using only “speech”
coefficients and the “speech” dictionary:

x̂ = U?
(s)z

?
(s)

39/40

Baseline comparison

C. D. Sigg, T. Dikk, JMB, IEEE Transactions Audio, Speech, and Language Processing, 20(6), 1698-1712, 2012

I Objective measure: Frequency Weighted Segmental SNR
I Baselines:

I GA: Geometric spectral subtraction
I VQ: Codebook based enhancement

40/40

Set-Top Box Application

Enhance sports commentary audio stream:

	Compressive Sensing

