Computational Intelligence Laboratory Lecture 1

Gunnar Rätsch (for Thomas Hofmann on Sabbatical)

ETH Zurich - da.inf.ethz.ch/cil

25 February 2022

Section 0

Course Philosophy

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Computational Intelligence

Data Science & Machine Learning: Foundation for Sciences, Engineering & Technology

- interpreting experimental data
- making predictions about likely outcomes
- supporting data-informed decisions
- enabling machines to perform intelligent tasks

(ロ) (部) (E) (E) E のへの 3/30

 $\Rightarrow \mathsf{Computational\ Intelligence}$

AI Infrastructure

Evergrowing number of methods and models available

- conveniently packaged in software libraries (e.g., PyTorch)
- unprecedented computing machinery (e.g., GPU servers)
- active community (e.g., blogs, tutorials, best practices)

rapid innovation, time-to-product

 \Rightarrow Low Barriers, High Productivity, High Success Rates

Competence and Understanding

Importance of Understanding

- Use of computational intelligence needs to be accompanied by appropriate competence
- Mathematical analysis of models & algorithms
- Deepen the foundations rather than following the fashion
- Models are often very complex \Rightarrow difficult to analyze
- Simplifications: perform analysis & calculations with simple models, develop theory, extrapolate with experiments

Everything should be made as simple as possible, but no simpler. - Albert Einstein

Calculation vs. Computation

Easy to "run code over data"! But then what?

- Deep Learning: mainstream as black art tweaking, fishing, hacking, folklore knowledge, pseudo-scientific language
- Clean calculation = insights, understanding, clarity!
- Computational intelligence: prefer calculations over computations for understanding

In any special doctrine of nature there can be only as much proper science as there is mathematics therein.

- Immanuel Kant

Metaphysical Foundations of Natural Science (1786, 4:470)

$CIL = 2 \times Laboratory$

"Hands-on" Mathematics

- "Hands-on" use of mathematical methods: linear algebra, multivariate analysis, probability theory, statistics
- Mathematical modeling (role model: theoretical physics) = applied mathematics.
- ► Emphasis not on proving abstract theorems, but: performing sensible calculations ⇒ Practice mathematical skills

"Hands-on" Programming

- ▶ Practical projects ⇒ Develop genuine solutions
- But: take guidance from analysis & theory

Course Content

Dimensionality reduction

Linear autoencoders, projections, principal component analysis, learning algorithms, non-linear autoencoders

Matrix Approximation

Collaborative filtering, Rank 1 model, singular value decomposition, alternating least squares, projection algorithms, exact matrix reconstruction

Latent Variable Models

Probabilistic Clustering Models, topic models, embeddings

Deep Neural Networks

 Compositional models, Backpropagation, gradient descent, convolutional neural networks

Generative Models

Autoregressive models, normalizing flows, variational

Course Material

Lectures

- ► Thomas Hofmann is on Sabbatical this semester.
- Lectures will be given by Prof. Gunnar Rätsch (raetsch@ethz.ch)
- ▶ No major changes in the lecture material or content.

Course Material

Lectures

- Thomas Hofmann is on Sabbatical this semester.
- Lectures will be given by Prof. Gunnar Rätsch (raetsch@ethz.ch)
- ▶ No major changes in the lecture material or content.

Course Moodle

- https://moodle-app2.let.ethz.ch/course/view.php? id=16549
- Slides will usually be available a day in advance
- Please use Moodle to ask questions about the course content or organization.
- Explore use of "CIL Overflow", a StackOverflow-like plugin

Course Material

Lectures

- Thomas Hofmann is on Sabbatical this semester.
- Lectures will be given by Prof. Gunnar Rätsch (raetsch@ethz.ch)
- ▶ No major changes in the lecture material or content.

Course Moodle

- https://moodle-app2.let.ethz.ch/course/view.php? id=16549
- Slides will usually be available a day in advance
- Please use Moodle to ask questions about the course content or organization.
- Explore use of "CIL Overflow", a StackOverflow-like plugin

Lecture Notes

Will be used unchanged (except typos/mistakes) from last year. Provided via Moodle/course website.

Course Format

Lectures Friday 10am-12pm

- ▶ By default, all lectures in presence in ML D 28.
- Zoom access: https://ethz.zoom.us/j/69416491737?pwd= bFQvMjJCU0ZHMU8rZjhGbkd0SWZ3QT09

- We will provide recordings of each lectures (check https://video.ethz.ch/lectures/d-infk/2022/spring.html).
- No lectures on April 15 & April 22

Course Format

Lectures Friday 10am-12pm

- By default, all lectures in presence in ML D 28.
- Zoom access: https://ethz.zoom.us/j/69416491737?pwd= bFQvMjJCU0ZHMU8rZjhGbkd0SWZ3QT09
- We will provide recordings of each lectures (check https://video.ethz.ch/lectures/d-infk/2022/spring.html).
- No lectures on April 15 & April 22

Exercises sessions: Friday 4-6pm, Q&A Thursday 2-3pm

- Organized via Zoom: https://zoom.us/j/2288537317
- Recordings of the exercises will be provided.
- No recordings of the Q&A sessions.

Leonard Adolphs

Antonio Orvieto = > = ? . C 10/30

Plan for the rest of today

- Intro of exercises and projects by Head TAs
- Break
- Start of first content block (dimensionality reduction)

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Section 1

Dimension Reduction Introduction

◆□ ▶ ◆昼 ▶ ◆ 星 ▶ ▲ 星 → 오 ○ 12/30

Motivation

Finding low-dimensional data representations

- Original raw representation often high-dimensional and redundant. Examples: images, audio, time series.
- Goal (i): compress data (while preserving relevant information)
- Goal(ii): interpretable representation, different modes of variation factored out
- ▶ Historically: Pearson 1901, Principal Component Analysis

Auto-Encoder

Taking a Deep Neural Network (DNN) viewpoint: Auto-Encoder

Input

Output

Where does data come from?

• Data generating law $\mathbf{x} \sim \nu$ (probability measure, implicit)

▶ Sample set $\mathcal{S} = \{ \mathbf{x}_i \overset{\text{iid}}{\sim} \nu, \; i = 1, \dots, s \}$

Notation: expectation, true and empirical

 $\mathbf{E}_{\nu}[f(\mathbf{x})]$ and $\mathbf{E}_{\mathcal{S}}[f(\mathbf{x})]$

▲□▶ ▲□▶ ▲ ■▶ ▲ ■ ▶ ■ ⑦ Q ℃ 15/30

Relevant functions and maps?

• Encoder & decoder (e.g.,
$$m \ll n$$
)
 $F : \mathbb{R}^n \to \mathbb{R}^m, \qquad G : \mathbb{R}^m \to \mathbb{R}^n$

Reconstruction map

 $G \circ F : \mathbb{R}^n \to \mathbb{R}^n$ (composition of maps)

Ideally (but unachievable)

$$G \circ F = \mathsf{id}$$

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ = りへで 16/30

Quality criterion; Distortion Measure?

Abstractly: loss function

$$\ell : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}, \quad (\mathbf{x}, \hat{\mathbf{x}}) \mapsto \ell(\mathbf{x}, \hat{\mathbf{x}})$$

…in the absence of domains-specific knowledge …

Quadratic loss

$$\ell(\mathbf{x}, \hat{\mathbf{x}}) = \frac{1}{2} \|\mathbf{x} - \hat{\mathbf{x}}\|^2$$

... do not forget: this is a convenient choice ...

Risk function?

Risk function = average loss - what distribution?

Empirical Risk:

New Data Risk: (Lebesgue integral)

$$\mathbf{E}_{\nu}[\ell] = \int \ell(\mathbf{x}, (G \circ F))(\mathbf{x}) \ d\nu(\mathbf{x})$$

Layers of units (vectors back and forth)

- Simplicity (1): start with single layer (for encoder and decoder)
- ► Simplicity (2): start with simple functions F and G ⇒ Linear Auto-Encoder

▲□▶ ▲□▶ ▲ ■▶ ▲ ■▶ ■ ⑦ Q ℃ 19/30

Bring back (compositional) depth in the end

Section 2

Dimension Reduction: Linear Auto-Encoder

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ 差 ∽ Q ^Q _{20/30}

Linear Auto-Encoder

Identifying F, G with linear maps

Linear Auto-Encoder objective

$$\mathcal{R}(\mathbf{W}, \mathbf{V}) = \mathcal{R}(\mathbf{P} := \mathbf{V}\mathbf{W}) = \mathbf{E}\left[\frac{1}{2}\|\mathbf{x} - \mathbf{P}\mathbf{x}\|^2\right]$$

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ○ Q (~ 21/30

Linearity = natural simplification for initial analysis

Linear Compositionality

Composing of linear maps \equiv matrix multiplication

$$F(\mathbf{x}) = \mathbf{W}\mathbf{x}, \quad G(\mathbf{z}) = \mathbf{V}\mathbf{z}$$
$$(G \circ F)(\mathbf{x}) = G(F(\mathbf{x})) = \mathbf{V}(\mathbf{W}\mathbf{x}) = (\mathbf{V}\mathbf{W})\mathbf{x}$$

(simply follows from associativity of matrix product)

Does it make sense to compose linear functions for F or G? No, if the goal is to increase expressivity (or modeling power)!

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ○ Q (~ 22/30)

Q: Are affine autoencoders more powerful than linear ones?

A: For centered data and the squared loss: optimal affine reconstruction maps are linear.

Centering of data

$$\mathbf{x} \leftarrow \mathbf{x} - \mathbf{E}[\mathbf{x}]$$

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ○ Q (~ 23/30

(e.g., subtract sample mean, simple pre-processing)

Proof.

Let $\mathbf{a} \neq \mathbf{0}$, then

$$\begin{split} \mathbf{E} \|\mathbf{x} - (\mathbf{P}\mathbf{x} + \mathbf{a})\|^2 &= \mathbf{E} \|\mathbf{x} - \mathbf{P}\mathbf{x}\|^2 + \|\mathbf{a}\|^2 + 2\langle \mathbf{a}, \underbrace{\mathbf{E}\mathbf{x} - \mathbf{P}\mathbf{E}\mathbf{x}}_{=\mathbf{0}} \rangle \\ &> \mathbf{E} \|\mathbf{x} - \mathbf{P}\mathbf{x}\|^2 \end{split}$$

<□ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = うへで 24/30

A: For centered data and squared loss, optimal affine maps degenerate to linear ones.

Proof.

Note that

$$V(Wx + a) + b = VWx + c$$
, where $c = b + Va$

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の Q @ 25/30

When centering data as a preprocessing step, affine maps cannot obtain better reconstruction than linear ones in autoencoders.

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ○ Q (~ 26/30

Identifiability & Non-Identifiability

Q: Is the representation of \mathbf{P} as $\mathbf{P} = \mathbf{V}\mathbf{W}$ unique?

Two questions

First: is the optimal linear reconstruction map unique?

Second: is the parameterization via weight matrices W, V unique?

Second question: no

$$\mathbf{V}\mathbf{W} = \mathbf{V}\mathbf{I}\mathbf{W} = \mathbf{V}(\mathbf{A}\mathbf{A}^{-1})\mathbf{W} = \underbrace{(\mathbf{V}\mathbf{A})}_{=:\mathbf{V}'}\underbrace{(\mathbf{A}^{-1}\mathbf{W})}_{=:\mathbf{W}'}$$

▲□▶ ▲圖▶ ▲ 필▶ ▲ 필▶ ■ ⑦ ٩ ℃ 27/30

where A can be any invertible matrix.

Parameter Non-Identifiability

The weight matrices are non-identifiable and one needs to be careful not to over-interpret the found representation.

Consequence of the non-identifiability: investigate constrained classes of square matrices \mathbf{P} and postpone the question of how to split it (non-uniquely) into a product of weight matrices

Rank Constraint

Q: What is the structural constraint on the reconstruction map in the autoencoder, i.e. how can we characterize $\mathbf{P} = \mathbf{VW}$?

Note that we want the inner dimension $m \ll n$. It is clear that

$$\operatorname{rank}(\mathbf{P}) = \min\{\operatorname{rank}(\mathbf{V}), \operatorname{rank}(\mathbf{W})\} \le \min\{n, m\} \stackrel{*}{=} m$$

Here the rank of a matrix (or its linear map) is defined as

$$\operatorname{rank}(\mathbf{A}) = \operatorname{dim}(\operatorname{im}(\mathbf{A}))$$

where the image (or range) is the linear span of the columns of A.

Next lecture

- ▶ $rank(\mathbf{P})$, linear subspace U
- Orthogonal projection to linear subspace
- Matrix Representation of Projection
- Principal Component Analysis

Homework: refresh linear algebra knowledge

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ E の へ C 30/30