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General Remarks

• Please check that you have all 24 pages of this exam.

• Remove all material from your desk which is not permitted by the examination regulations.

• Fill in your name and ETH number and sign the exam. Place your student ID on the desk.

• You have 120 minutes for the exam. There are five questions, where you can earn a total
of 120 points. You don’t need to score every point to earn the top grade.

• Write your answers directly on the exam sheets. If you need more space, put your name
and ETH number on top of each supplementary sheet.

• Answer the questions in English. Do not use a pencil or red color pen.

• You may provide at most one valid answer per question. Invalid solutions must be canceled
out clearly.

Topic Max. Points Points Achieved Visum

1 Clustering 30
2 Dimensionality Reduction 30
3 Role Mining 20
4 Deterministic Annealing 10
5 Sparse Coding 30

Total 120

Grade: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Question 1: Clustering (30 pts.)

a) We have N data points in D dimensions. Perform the first iteration of the K-means
algorithm with the Euclidean distance by hand. Assume K = 2 clusters and that the first
and second centroid are initialized to the first and second data point, respectively. Give the
answer in the matrix factorization format: X ≈ UZ, with the data points X ∈ RD×N , the
centroids U ∈ RD×K and the assignments Z ∈ {0, 1}K×N . The data is given by

X =

[
1 3 2 0 2
0 3 3 0 2

]
.

Compute the matrices U(0),Z(1) and Z(1).

Answer:

i) Initialization centroids.

U(0) =

[ ]
ii) Assignment step.

Z(1) =

[ ]
iii) Update centroids.

U(1) =

[ ]
You may use fractions or round-off to the first decimal. 6 pts.
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b) Derive the centroids update for the k-means algorithm. Start your derivation by considering
the cost J(U,Z) of a clustering

J(U,Z) =
N∑

n=1

K∑
k=1

zk,n‖xn − uk‖22.

Here uk denotes the k-th centroid and zk,n the assignment of data point xn to the k-
th cluster. We expect you to write down all intermediate steps of the centroid update
derivation.

Answer:

5 pts.

In the lecture we have discussed the Gaussian mixture model (GMM)

pGMM(x|π,µ, σ) =
K∑
k=1

πkN (x|µk, σ),

in which N (x|µ, σ) is the 1-D Gaussian distribution with mean µ and standard deviation σ,

N (x|µ, σ) = 1√
2πσ2

exp

(
−(x− µ)2

2σ2

)
.

Let us now consider the problem of sampling from the GMM. Sampling describes the process
of generating (or drawing) data points from a given distribution, which in our case is given by
the GMM from above. Sampling a data point from the GMM is done in two steps.

c) Describe the two steps in words.

Answer:

2 pts.
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Having identified the two parts, we are now interested in an algorithm for sampling from the
Gaussian mixture model distribution.

d) Give a detailed Matlab implementation for sampling a data point from the 1-D Gaussian mix-
ture model. Assume that the means of the different components are given by [µ1, . . . , µK ]
in the vector mus, and that all components have the same standard deviation sigma. Fur-
thermore, you are given the mixture weights [π1, . . . , πK ] in the vector pis.

Hints:

• You can use a function x = rand gaussian(mu, sigma) that generates a data point
from a Gaussian distribution with mean mu and standard deviation sigma.

• You will need to use the function x = rand(), which generates a random number
uniformly in (0, 1].

Answer:

function x = sample_gmm(pis, mus, sigma)

8 pts.
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Imagine you are given a box of fair dice: 20% of the dice are four sided showing the numbers
1, . . . , 4, and 80% of the dice are six sided with numbers 1, . . . , 6. You now pick a die in this
box at random and throw the die that you just chose and write down the number shown on the
die. Finally you put the die back into the box.

e) Give a concise mathematical expression for P (X = n), where X is the random variable that
denotes the outcome of the process described above and n is an integer in 1, . . . , 6. Do not
compute the values of all these events, but only give a symbolic expression.

Answer:

6 pts.
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f) Below you see the centroids of the solution of two clustering algorithms. One solution is
computed by the k-means algorithm (hard assignments), one by the Gaussian mixture model
(soft assignments). Which estimated centroids correspond to which clustering algorithm?
We expect you to give a reasoning for your solution (no points if no explanation is given).

−3 −2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3

x
1

x
2

Answer:
Centroid-pair + corresponds to:

Centroid-pair× corresponds to:

Explanation:

3 pts.
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Question 2: Dimensionality Reduction (30 pts.)

Singular Value Decomposition

We are given a user-item matrix A of 6 users and 7 items, where ai,j contains a value between
0 (dislike) and 10 (like) indicating the preference of user i for item j. We apply SVD on
A = UDV> and obtain the following (rounded off) matrices U and V>.

U =


0.4 0.2 0.5 0.5 −0.3 −0.4
0.3 −0.6 −0.1 −0.4 −0.1 −0.5
0.4 0.3 −0.5 −0.1 −0.6 0.3
0.4 0.2 0.5 −0.5 0.3 0.4
0.3 −0.6 −0.1 0.4 0.1 0.5
0.4 0.3 −0.5 0.2 0.6 −0.3

 ,

V> =



0.40 0.40 0.37 0.35 0.40 0.35 0.37
0.39 0.43 −0.38 −0.40 0.43 −0.33 −0.27
0.01 0.05 0.47 0.46 0.05 −0.53 −0.53
−0.56 0.29 −0.17 0.15 0.29 0.49 −0.47
0.12 −0.06 0.62 −0.63 −0.06 0.31 −0.32
−0.60 0.26 0.30 −0.28 0.26 −0.39 0.43

0 −0.71 0 0 0.71 0 0



1. Please write down the corresponding matrix D. To help you, we reveal the values of the
following elements: d1,1 = 45, d2,2 = 20, d3,3 = 17, d4,4 = 1, d5,5 = 0.7, and d6,6 = 0.2.
Answer:

2 pts.
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2. Given the factorization A = UDV>, write down the equation for A as a full sum of outer
products.
Answer:

2 pts.

3. We would like to represent the data with fewer dimensions, resulting in an approximation.
We compute a good approximation for A by selecting k < 6 dimensions to keep. Choose
the dimensions you want to keep and write down the equation for your approximation Ã
as a sum of outer products of these selected dimensions. Explain your choice.
Answer:

4 pts.

4. For your choice above, box out the components in U, V> and D that we would like to
keep.
Answer: Box out in the previous page. Do not forget to box D as well!

4 pts.

5. Please write down the numerical value of the approximation error (under the Euclidean
matrix norm) of your solution.
Answer:

1 pt
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6. How do we deduce the preference of user i for item j in your approximation Ã? Write
down the equation.
Answer:

2 pts.

7. Write down the numerical sums for computing the preference of user 5 for item 3. Roughly
estimate its value and tell us if user 5 likes item 3 (i.e., is this value closer to 10 or 0)?
(Do this easily by rounding-off all numbers in the numerical sum to one significant value.)
Answer:

3 pts.

8. Whoops! One item was mistakenly included twice in the original matrix A before perform-
ing the SVD (i.e., we actually only have 6 items, and 1 item was replicated). Which two
items are identical? Explain your choice.
Answer:

4 pts.
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Principal Component Analysis

We are given a data set X ∈ RD×N of N samples of dimension D and its SVD decomposition
X = UDV>. Furthermore, we state that X is zero-mean, i.e., the mean of the samples along
each dimension is 0.

We would like to perform a dimensionality reduction on X using PCA.

1. In PCA, we need to perform an eigenvalue decomposition on a particular quantity H. What
is this quantity H, and write it in terms of X.
Answer:

2 pts.

2. We can use the SVD solution to compute the PCA. Show this by first plugging in the SVD
factorization X = UDV> into your definition of H. Use the fact that V>V = I (where
I is the identity matrix) to simply your equation.
Answer:

4 pts.

3. Second, explain how your answer to the previous question can be used to obtain the PCA
for X: what are the eigenvalues and respective eigenvectors of H?
Answer:

2 pts.
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Question 3: Role Mining (20 pts.)

Permission assignments via roles Assume a binary user-permission matrix X with D per-
missions and N users, which we factorize into U (the matrix of roles) and Z (the assignment
matrix of roles to users). There are various evaluation criteria for role mining solutions.

a) State the formula and a short description for the deviation (mean Hamming distance).
Your explanation should include what a low (and a high) deviation implies.
Answer:

Formula:

Explanation:

4 pts.

b) The generalization error of a set of roles to a new user-permission matrix X′ is computed
as follows: For each new user i, the optimal role assignment ẑ·,i is determined based on a
subset D∗ ⊂ {1, . . . , D} of the permissions:

ẑ·,i := argmin
z.,i

{∑
d∈D∗

∣∣x′d,i − ud,· ⊗ z·,i
∣∣}

The generalization error is then

G :=
1

N

N∑
i=1

1

D

∣∣∣∣x′·,i −U⊗ ẑ·,i
∣∣∣∣
1

1. What does a high generalization error imply?
Answer:

1 pt.
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2. What does the generalization error and the deviation have in common? How do
they differ?
Answer:

1 pt.

3. Let a noisy dataset X̃ be given. Is the existence of a set of roles with generalization
error G = 0 possible? Explain your answer.
Answer:

1 pt.

c) Let the three roles r1 = {p1, p3, p4}, r2 = {p2, p3}, and r3 = {p1, p3} be given, where pd is
the dth permission.

1. A user is assigned the role combination {r1, r2}. What are his permissions? Answer:

3 pts.

2. How many combinations of the roles r1, r2, and r3 contain p1? How many combinations
do not contain p1? (Assigning no role does not count as a combination.)
Answer:

5 pts.
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3. The assignment vector z·,2 encodes that user number two is assigned the roles r4, r5,
and r6. Let td,k be the probability that role k contains permission d. Derive the prob-
ability p(x5,2 = 1|z·,2) that the user has permission 5 given his roles. Compute the
magnitude of this probability for t5,4 = 0.9, t5,5 = 0.7, and t5,6 = 0.5. You can assume
that t5,4, t5,5, and t5,6 are independent.
Answer:
p(x5,2 = 1|z·,2) =

5 pts.
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Question 4: Deterministic Annealing (10 pts.)

Let the data set X = (x1, . . . ,xN) consist of N data items. There are K clusters numbered
from 1 to K. Each cluster k is described by its parameters θk. A given clustering model specifies
costs Rn,k for assigning data item n to cluster k, for n = 1, . . . , N and k = 1, . . . , K.

a) In the following, you are given pseudo-code for deterministic annealing. However, the lines
are mixed up. Please sort the lines such that the pseudo-code is correct. You don’t have to
write down the corrected code, just give the line numbers in correct order.

1. M-step: For k = 1, . . . , K, optimize the parameters θk given the current values γn,k

2. end while

3. E-step: Given the current parameter values θk, compute Rn,k and γn,k =
exp[− 1

T
Rn,k]∑

k exp[− 1
T
Rn,k]

for all n and k.

4. Decrease T : T ← α · T , α < 1

5. while not converged

6. Determine whether the algorithm has converged

7. Initialize: T = Tstart, converged = false, θk = random initialization

Answer:

6 pts.

b) What is the effect of the parameter T in deterministic annealing? Discuss in particular the
limits T →∞ and T → 0.

Answer:

4 pts.
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Question 5: Sparse Coding (30 pts.)

Orthogonal Matrices and Bases

a) What are the three properties that U has to satisfy, such that it is an orthogonal matrix?

Answer:

3 pts.

b) Here is a proof for a very useful property of orthogonal matrices. Given an orthogonal matrix
U and a vector x (both of proper size), it holds that

∥∥U>x∥∥2
2

=
(
U>x

)> (
U>x

) ( )

= x>UU>x

( )

= x>Ix

( )

= ‖x‖22 ,

( )

where I is the identity matrix. First, for every line of the proof, write down in the space
next to it why this equality holds. Second, what is the property that we have proven here?
Give your answer in the form of a theorem.

Answer:

5 pts.
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c) The Haar wavelets H ∈ R4×4 form an orthogonal basis of R4. In the upper left figure,
the mother wavelet h1 ∈ R4 is shown both as a graph and as a column vector. Complete
the Haar basis using dilation and translation operations, i.e. add the remaining three basis
column vectors.

Finally, normalize each vector to unit Euclidean length, such that we have an orthonormal
basis. Use the approximation 1/

√
2 ≈ 0.7 in your calculations.

Answer:

1
1
-1
-1

1

0.5
0.5
-0.5
-0.5

h1 h2

h3 h4

6 pts.

Compression by Sparse Coding

d) What are the coding and thresholding steps, to compress a signal x ∈ R4 using the Haar
basis H?

Answer:

2 pts.

16



e) What is the least compressible signal y ∈ R4, i.e. the signal that achieves the worst
compression ratio vs. reconstruction error, using sparse coding in the Haar basis? Consider
only signals which satisfy ‖y‖2 = 2.

Draw the graph of y, give its representation as a vector and argue why it is the least
compressible signal.

Answer:

y

5 pts.
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Matching Pursuit

f) Here is an incomplete Matlab implementation of sparse coding by matching pursuit (MP).
U is the dictionary, x the signal and k the desired cardinality of the coding z:

09.08.10 15:54 E:\phd\teaching\2010fs\cil\exam\problems\sparse...\mp_blank.m 1 of 1

function z = mp(U, x, k)
 
z = zeros(size(U,2), 1); 
res = x;
card = 0;
while card < k
 
    [~, cur] = max( _____________ );
    coef = U(:,cur)'*res;
 
    res = res - _______________ ;
    z(cur) = z(cur) + coef;
    card = sum( z ~= 0 );
end
end
 

Complete the two blanks.

4 pts.
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g) Visualize the MP algorithm on the following example, using k = 2. For each iteration of
the while loop, illustrate the atom choice (circle the correct uk), projection (solid line)
and residual (dashed line) computation steps. In the final figure, draw in the approximate
reconstructed signal x̃ = Uz.
Note: You may draft your solution in the draft sheet.
Answer:

u1

u3

u2

x

u1

u3

u2

(1) First Iteration (2) Second Iteration

u1

u3

u2

u1

u3

u2

x

(3) Third Iteration (4) Approximate Reconstructed Signal

5 pts.
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Supplementary Sheet
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Supplementary Sheet
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Supplementary Sheet
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Draft Sheet for Question 5 Part g: This page will not be corrected.

u1

u3

u2

x

u1

u3

u2

(1) First Iteration (2) Second Iteration

u1

u3

u2

u1

u3

u2

x

(3) Third Iteration (4) Approximate Reconstructed Signal

23



Notation

• x is a column vector

• > denotes the transpose operator, so x> is a row vector

• The elements of a vector are denoted as x = (x1, x2, . . . , xD)
>

• U is a matrix:

– uk or u.,k is the k-th column of U

– u>d or ud,. is the d-th row of U

– ud,k is the element in the d-th row and k-th column of U

Please use this notation when answering questions - except the bold font style, of course.
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