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General Remarks

e Please check that you have all 16 pages of this exam.

e There are 120 points, and the exam is 120 minutes. Don’t spend too much time on
a single question! The maximum of points is not required for the best grade!

e Remove all material from your desk which is not permitted by the examination regulations.

e Write your answers directly on the exam sheets. If you need more space, make sure you
put your student-ID-number on top of each supplementary sheet.

e Immediately inform an assistant in case you are not able to take the exam under regular
conditions. Later complaints are not accepted.

e Attempts to cheat/defraud lead to immediate exclusion from the exam and can have
judicial consequences.

e Please use a black or blue pen to answer the questions.

e Provide only one solution to each exercise. Cancel invalid solutions clearly.

’ \ Topic \ Max. Points \ Points Achieved \ Visum ‘
1 Dimensionality Reduction 30
2 Clustering, Mixture Models, NMF 30
3 Sparse Coding and Dict. Learning 30
4 | Optimization / Robust-PCA 30
| Total | | 120 | \ |




1 Dimensionality reduction (30 pts)

1.1 SVD and PCA

Which of the following claims are true/false? (1 point per correct answer, -1 point per incorrect
answer, non-negative total points in any case)

7 pts

a) PCA is a dimensionality reduction which tries to minimize the variance of the data.
[ ] True [ ] False

b) The first principal direction is the eigenvector of the data matrix X with largest associated

eigenvalue.
[ ] True [ ] False

c) When using PCA, one typically discards the small eigenvalues.
[ ] True [ ] False

d) (counts for 2/-2pts). We first perform SVD on a data matrix X. We then rotate the data
matrix X. The singular vectors of the rotated matrix will be the same.
[ ] True [ ] False

e) (counts for 2/-2pts). Consider SVD for collaborative filtering for a matrix A of rank r,
where we assume all unobserved entries are marked by zero. When using K = r latent
concepts, the system will predict zero for all unobserved entries.

[ ] True [ ] False

1.2 SVD

Recall the definition of the matrix operator norm: ||A||3 := max, ||Ax||3 where ||x||2 = 1.

a) Using the SVD decomposition of A = USVT, prove that ||A||2 = ||S||?

b) Using SVD, prove that
rank(A) = rank(AAT) = rank(ATA)




1.3 PCA
Part 1

Consider the following data matrix X € RP*N where N = 3 is the number of datapoints,
and D = 2 is the dimension of each datapoint.

2 —1 -1
X‘{o -1 1}'

Compute XX T and then compute the first two principal axes of the data matrix X.
6 pts

Part 2

Now consider the following data matrix X € RP*YN where D =2 and N = 4.

1 -3 —1 3}

X:L -5 4 -2

The centered data X (i.e. X from which we subtracted the mean) is represented in the figure
below. The two lines represent the principal axes of X.




The covariance of X is given by

20 6
5= {6 45}

What dimension has the most variance?

Project the two points represented as filled-in circles on the two principal axes (draw directly on
the figure). Can you conclude which principal axis is a better choice to get a 1-D projection of
the data X7

We now consider a new data matrix Y = [X ZX] € RP*2N Write down the covariance of

the centered data Y and draw the principal axes on the same figure as X.




2 Clustering, Mixture Models, NMF (30 pts)

2.1 K-means clustering

Consider a data matrix X € RP*YN of N data points in D dimensions. We want to perform
the K-means algorithm with the Euclidean distance on X with the addition that we also want
to minimize the ¢o-norm of each cluster center uy.

min | J(U,Z) =
U.Z

K 1 K
>3l — w4 5 Y e |
1 k=1 k=1

INZ

Derive the update rule for the cluster centers uy.




2.2 Mixture model

Suppose we have a set of N observations (x1,...,xy) and we want to model this data using a
mixture of k£ Poisson distributions defined as

p,\(f) = Z Wig(l’; )\i),

where A = (Aq, ..., A\p).

Recall that a random variable X has a Poisson distribution with parameter A if its probability
mass function is given by:
B Ae™

g(X =x;)) o

Write down the expression for the log-likelihood L.

Write down the update equation for the naive attempt at maximizing £ with respect to a specific
mixture parameter ;.

6 pts

“The Expectation maximization algorithm maximizes a lower bound on the log-likelihood”. Ex-
plain what this lower bound is.

2 pts




2.3 Nonnegative Matrix Factorizations

Which of the following claims are true/false? (2 points per correct answer, -2 points per incorrect
answer, non-negative total points in any case)

10 pts

a) Consider NMF for clustering a set of datapoints X. In the solution to the NMF problem,
every datapoint is assigned to at most one cluster.
[ ] True [ ] False

b) For non-negative, non-zero matrices X € RP*Y U € RP*E and Z € REXN with
N.D > 1, furthermore rank(X) = min{D, N} and K < min{D, N}, one can always
find U and Z such that X = UZ exactly.

[ ] True [ ] False

c) In the NMF Algorithm, the update for U is given as

(XZ'),,

Udk < Udk 7o oy
(vzz'),,
[ ] True [ ] False

d) Consider a non-negative X and a quadratic cost function as in k-means:

. 1 2
min  J(U,Z) = 5[IX — UZ[}.

s.t. ugr € [O, OO) vd, k (1)
2kn € [0, 00) Yk, n. (2)

Semi-NMF is obtained by relaxing the positivity assumption (1) on U
[ ] True [ ] False

e) Semi-NMF — when additionally requiring all columns of Z to sum up to one, and all rows
of Z are orthogonal — is equivalent to k-means clustering.
[ ] True [ ] False



3 Sparse Coding and Dictionary Learning (30 pts)
3.1 Sparse coding

Part 1

Which of the following claims are true/false? (1 point per correct answer, -1 point per in-
correct answer, non-negative total points in any case)

Consider the following signal reconstruction problem 4 pts
z"* € argmin ||z]|p, st. y =0z
a) The above minimization of ||z||o is convex but NP-hard [ ] True [ ] False
b) One can always replace ||z||o by ||z||; and obtain the same solution
[ ] True [ ] False
c) Using an overcomplete dictionary yields sparser solutions [ ] True [ ] False
d) Recall: the coherence of U is defined as
m (U) = max ‘uz-TuA :
For an orthogonal basis B, we have m(B) = rank(B) [ ] True [ ] False

Part 2
Consider a signal x € R” which we want to represent as a linear combination of basis

vectors U = {uj,uy,...,uy}. In other words, x = Uz for z € RY. We also assume that
D = N and the matrix U is orthogonal (i.e. UU" =1 where I is the identity matrix).

Prove that given x, the transformed representation in the new basis is z = U”x.




Consider two signals x and x’ with their corresponding transforms z and z’ (more precisely
x = Uz and x’ = UZ'). For an orthogonal matrix U, prove that the change of basis preserves
pairwise distances i.e. |[|[x — X/||2 = ||z — Z||2.

(Hint: Use the fact that ||x||2 = ||z||2 when U is orthogonal.)

Part 3
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The figure above shows two different 1-D signals (left column) with their corresponding spec-
trum obtained using the FFT (middle column). In the right column, we show a signal obtained
by discarding part of the frequencies in the spectrum.



(1) Write down the formula to obtain the spectrum in the middle column of the previous figure,
in terms of linear transformation or change of basis (assuming a given basis U) applied to the
original signal x.

(2) Write down the inverse formula to obtain the reconstructed signal in the right column in
terms of linear transformation (change of basis) applied to the filtered spectrum z.

3 pts

What part of the signal would you discard to obtain the reconstructed signal? Draw a rectangle
on each spectrum in the middle column where everything inside the rectangle is kept for the
reconstruction.

4 pts

The Wavelet transform is a better choice than Fourier for the first signal (top row).
[ ] True [ ] False

2 pts

The Wavelet transform is a better choice than Fourier for the second signal (bottom row).
[ ] True [ ] False

2 pts

Looking at the middle figure in the top row, what do the first peaks in the spectrum correspond

to?

4 pts

10



4 Optimization and Robust PCA (30 pts)

4.1 Lagrange Duality

Consider the optimization problem given as min, ||x||?, x € RY under the constraints Ax < b,
for A € RP*N b e RP.

a) Write down the Lagrangian L(x, A\, v) corresponding to this optimization problem.

2 pts
b) Derive the dual function d(\,v) as a function of x.

2 pts
c) Find an explicit expression for x and d(\,v).

5 pts

4.2 Convex Optimization

Which of the following claims are true/false? (1 point per correct answer, -1 point per incorrect
answer, non-negative total points in any case)

4 pts

a) The union of two convex sets is convex.
[ ] True [ ] False

b) The epigraph of a function f : R? — R is a set in R”.
[ ] True [ ] False

c) (counts for 2/-2pts). The function f(v) := g(vvT) is convex over the vectors v € R?,
when g : R?*?2 — R is defined as g(X) = X5 + Xo;.
[ ] True [ ] False

11



4.3 Gradient Descent for Ridge Regression

Consider the optimization problem
: 1 2, A2
min | £(x) == 3]l Ax = || + Zlx|1?] .
for given A ¢ RP*N b c RP X cR.

a) Write down the update for one step of gradient descent, starting at x*), with stepsize .

2 pts

b) Write down the update for one step of stochastic gradient descent, starting at x*), with
stepsize . Hint: Write f as a sum, and assume the i-th term of the sum is randomly

selected.
4 pts
4.4 ADMM
a) Consider the same ridge regression problem as in the previous exercise, i.e.
. 1 A
min | £(x) i= o[l 4x = b||* + S x]?]
x 2 2
Write it in separable form suitable for ADMM.
2 pts

b) Provide the augmented Lagrangian L, for the separable form of this optimization problem.

2 pts

12



c) Write down the updates of the two variables x; and x5 in the ADMM algorithm, for
given A and b. Here for simplicity you are not required to find an explicit formula for
each minimum.

X1 .=

XD T e e e e e e e e s

4.5 RPCA for Collaborative Filtering

Consider the robust completion problem of a matrix X where X;; are observed matrix entries for
(1,7) € Qops. Write down the robust PCA problem for this task, as well as the convex relaxation
of this problem.

2 pts

State in one sentence why for this task, the RPCA approach is sometimes preferred to standard
low-rank matrix completion.

2 pts
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