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Preface

Everything should be made as simple as possible, but no simpler.
– Albert Einstein

Data science and machine learning have become the foundation for technologies and
sciences that make use of data to solve a wide range of challenges such as interpreting
experimental data, making predictions about likely outcomes, supporting data-informed
decisions, and enabling machines to perform intelligent tasks, e.g. in machine vision
and language understanding. There is today an evergrowing number of methods and
models available, conveniently packaged in software libraries and powered by unprecedented
computing machinery. It has never been easier to make use of methods of computational
intelligence. However, this ease of use is not always accompanied by thorough understanding
and a sufficient degree of conceptualization. The latter is problematic as the use of off the
shelf tools without a sufficient level of competence may result in unreliable outcomes or
lead to incorrect conclusions. Lack of understanding is clearly also a hindrance for the
innovative use and advancement of methodology, be it in the core of machine intelligence,
or in one of its many relevant domains of applications.

The goal of the Computational Intelligence Lab is to enable master level students
to connect their mathematical background in linear algebra, analysis, probability, and
optimization with their basic knowledge in machine learning and their general skill set in
Computer Science to gain a deeper understanding of models and tools of great practical
impact. This includes the often underestimated step of conceptualization and critical
modeling of the problem at hand, i.e. reflecting on assumptions and simplifications and
justifying the appropriateness of the approach taken. It also includes replacing computation
by calculation where possible. It is very hard to understand what may happen, when we
run code over data so to speak. What biases are introduced? What guarantees can be
made? When will the method work, when fail? What would we even look for empirically
to measure success? To answer such crucial questions, we need a mathematical model and
not just a computational toolbox in which the model remains opaque to our understanding.
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This follows the example set by physics, an area in which mathematical modeling plays
a pivotal role, yet where the mathematical proficiency is not so much in the ability to
prove fundamental theorems, but in doing back-of-the envelop calculations – sometimes on
oversized envelops – that capture the essence of the problem, possibly in a sketchy manner.
There may then remain a leap of faith towards reality, in our case, non-linear models with
a degree of complexity that often escapes the rigor that we may ideally strive for. However,
this does not devalue the need of applied mathematics in machine intelligence, quite the
contrary.

These lecture notes are not an encyclopedia of mathematical modeling for machine
intelligence. Rather, they are a compilation of relevant, weakly interconnected topics for
which we carry out the program described above in an exemplary manner. The focus
is not on breadth and there is no claim to any level of completeness, rather the aim is
to go deep on a few selected topics. The topics chosen will (inevitably) overlap with
other machine learning courses, yet our approach will differ. The goal here is not so
much to teach new methods or models, but to train students in the competent use of
mathematics, so that they can independently apply the learned skills to the models not
covered. We will not provide a systematic introduction to the mathematics needed. One can
consult excellent undergraduate textbooks or machine-inspired textbooks such as [8]. As far
as programming goes, we will make use of Python, its scientific computing library NumPy
and some more specialized libraries such as PyTorch when it comes to neural network models.
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1. Dimension Reduction

1.1 Introduction
1.1.1 Motivation

The canonical representation for data is often in the form of vectors of measurements
x ∈ Rn. The dimensionality can be low, if features are carefully chosen a priori, but is
often very high in modern machine learning when raw data (e.g. images, audio, time-series)
are used as input. It then becomes an intermediate goal of its own to find low dimensional
representations, which compress the data, while preserving its relevant content. Even more,
one often seeks representations that are interpretable and factor out different modes of
variation. This theme has been prevalent in pattern recognition since the invention of
principal component analysis by Pearson in 1901 [33].

In the absence of a task-specific notion of relevance, we will first study the objective of
lossy reconstruction in a model class known as autoencoders. Figure 1.1 shows this in the
graphical language of neural networks.

1.1.2 Setting
We consider the following setting:
Data Law. Data vectors are generated at random, following a probability distribution

or data law ν. Typically ν is unknown and we only have access to a sample set
S = {xt

iid∼ ν, t = 1, . . . , s}. We then write

Eν [f(x)] =

∫
Rn
f(x) ν(dx) or ES [f(x)] =

1

s

s∑
t=1

f(xt). (1.1)

For instance, ES [x] is the sample mean. We will drop the subscript, if the data law
or the sample are unambiguous.

Encoder & Decoder An autoencoder consists of a complementary pair of maps: an
encoder F : Rn → Rm and a decoder G : Rm → Rn, which together form the
reconstruction map G ◦ F : Rn → Rn. The ideal autoencoder would have G ◦ F = Id
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Figure 1.1: Autoencoder class of models for lossy reconstruction.

or G = F−1, however this would not be interesting and the key idea is to restrict the
dimensionality of the encoding by choosing m < n (think: m� n). This forces the
autoencoder to learn a compressed or dimension reduced data representation.

Reconstruction Loss As the autoencoder output may not perfectly reproduce the input,
we need to specify a distortion or loss function, which is a function with signature
` : Rn × Rn → R. We will mainly focus on the quadratic loss `(x, x̂) = 1

2‖x − x̂‖2
between a pattern x and its reconstruction x̂. The objective we aim to minimize
is typically the expected loss (also called risk) of a reconstruction map R(H) =
E [`(x, H(x))], where H = G ◦ F in the autoencoder.

1.1.3 Challenge

In the spirit of this class, we would like to understand the autoencoder through mathematical
analysis. We aim to generate insights about the model structure and biases, the role of
the learning objective, the effectiveness of learning algorithms, and the dependencies on
the data law. We will – to a large part – focus on the linear autoencoder, which we can
analyse with the help of tools from linear algebra and multivariate calculus. The focus is
less on know how (to implement it) as it is on know what (one does, if one implements
or uses it). We will proceed in small steps towards what is known as Principal Compo-
nent Analysis (PCA) and will conclude with a simple experiment on non-linear autoencoders.

As a side note:

[The method is a set of] reliable rules which are easy to apply, and such
that if one follows them exactly, one will never take what is false to be true or
fruitlessly expend one’s mental efforts, but will gradually and constantly increase
one’s knowledge till one arrives at a true understanding of everything within one’s
capacity.

– René Descartes (Discours de la méthode)



1.2 Linear Autoencoder 11

1.2 Linear Autoencoder
The linear autoencoder is obtained by identifying F,G with linear maps

linear encoder F : x 7→ z = Wx, W ∈ Rm×n .

linear decoder G : z 7→ x̂ = Vz, V ∈ Rn×m .

which together with the squared loss leads to the risk

R(W,V) = R(P := VW) = E
[

1
2‖x−Px‖2

]
. (1.2)

Linear models are often a good starting point, both as a practical benchmark as well as
an object of analysis, since linearity comes with a powerful arsenal of analytic tools. In
the language of neural networks, W,V are called weight matrices of the first (hidden) and
second (output) layer, respectively.

1.2.1 Linear Compositionality
We start with a first observation: If we compose linear maps, the resulting map is lin-
ear. When representing linear maps by matrices, composition of maps is nothing but
multiplication of matrices, the result of which is a new matrix.

→ The reconstruction map of the linear autoencoder is a linear map as linear
maps are closed under composition. In matrix form it is given by P = VW.

1.2.2 Linear vs. Affine Maps
One could consider a slightly more powerful class of models with affine (and not just linear)
maps as encoder and/or decoder. However, this will potentially complicate implementation
as well as analysis. It is important to understand this design choice.

Q Are affine maps more powerful than linear maps in autoencoders?

Definition 1.2.1 — Centering. The data is centered, if Ex = 0. Data can be centered by
transforming x← x−Ex, i.e. by subtracting the mean.

Proposition 1.2.1 For centered data and the squared loss: optimal affine reconstruction
maps are linear.

Proof. Let a 6= 0, then
E‖x− (Px + a)‖2 = E‖x−Px‖2 + ‖a‖2 − 2〈a,Ex−PEx︸ ︷︷ ︸

=0

〉 > E‖x−Px‖2. �

Corollary 1.2.2 For centered data, optimal affine maps degenerate to linear ones.

Proof. Note that V(Wx + a) + b = VWx + c, where c = b + Va. �

→ When centering data as a preprocessing step, affine maps cannot obtain better
reconstruction than linear ones in autoencoders.
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1.2.3 Non-Identifiability
As the expected loss only depends on the product of the weight matrices P = VW ∈ Rn×n,
one can ask:

Q Is the representation of P as P = VW unique?

This is also called (parameter) identifiability. Note that there are two levels of unique-
ness: First, is the optimal linear reconstruction map Rn → Rn unique? Second, is the
parameterization via weight matrices W,V unique? In the linear autoencoder, obviously
VW = VIW, so we can ’squeeze in’ any pair of matrices between V and W that yield the
identity I, more precisely:

Proposition 1.2.3 For any solution pair (W,V)

{(W′,V′) : V′W′ = VW} ⊇ {(W′,V′) : W′ = AW, V′ = VA−1, A invertible}.

Proof. V′W′ = VA−1AW = VW. �

Corollary 1.2.4 R(W,V) = R(AW,VA−1) for any invertible A.

→ The weight matrices are non-identifiable and one needs to be careful not to
over-interpret the found representation.

As a consequence of the non-identifiability, we may want to investigate constrained classes
of square matrices P and postpone the question of how to split P = VW (non-uniquely)
into a product of weight matrices. But this means we need to first understand the constraint
imposed by the bottleneck architecture on the reconstruction map.

1.2.4 Rank-Constraint

Q What is the structural constraint on the reconstruction map in the autoencoder,
i.e. how can we characterize P = VW?

Recall that V ∈ Rn×m and W ∈ Rm×n. We want m to be small relative to n, possibly
m� n. It is immediately clear1 that dim(im(W)) ≤ m as:

Proposition 1.2.5 For a linear map L represented by A, im(L) = span{columns of A}.

Proof. Follows from the definition of the matrix-vector product. �

Definition 1.2.2 — Rank. The rank of a linear map L is rank(L) = dim(im(L)).

Proposition 1.2.6 L : V → V ′ linear, dim(V )=n, dim(V ′)=m: rank(L) ≤ min{m,n}.

Proof. Obvious, if m ≤ n as im(L) ⊆ V ′. If n < m, by linearity and definition of image we
have im(L) = span{L(v1), . . . , L(vn)} for any choice of basis of V . The dimensionality of
the span of n vectors cannot exceed n. �

1By im(W) we mean the image of the linear map with matrix representation W in the canonical basis.
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Proposition 1.2.7 Given linear maps L : V → V ′, L′ : V ′ → V ′′, then

rank(L′ ◦ L) ≤ min{rank(L), rank(L′)}.

Proof. Thanks to Proposition 1.2.6, we just need to show that rank(L′ ◦ L) ≤ dim(V ′).
Let v1,v2, . . . ,vm be a basis for V ′; by linearity of L′, im(L′) is span{L′(v1), . . . , L′(vm)},
which has at most dimension m. Since im(L′ ◦ L) ⊆ im(L′), rank(L′ ◦ L) ≤ m. �

We conclude with the following corollaries.

Corollary 1.2.8 If im(L) ∩ ker(L′) = {0}, then equality holds in Proposition 1.2.7.

Corollary 1.2.9 For matched matrices A, B: rank(AB) = min{rank(A), rank(B)}.

→ The reconstruction map of a linear autoencoder is of rank less or equal to m.
The bottleneck layer constitutes a rank constraint.

1.3 Projections
Note that the rank limitation on P is independent of the loss function and so is the lack of
identifiability of its factorization. We will now exploit the specifics of the squared loss. The
rank constraint together with linearity implies that im(P) is a linear subspace U ⊆ Rn of
dimension at most m.

Q Given a subspace U ⊆ Rn, what is the optimal linear reconstruction map P
such that R(P) is minimized subject to im(P) = U?

1.3.1 Orthogonal Projection
We can define the optimal reconstruction map implicitly.

Definition 1.3.1 The orthogonal projection to a linear subspace U ⊆ Rn is defined as

ΠU : Rn → U, ΠU (x) = arg min
x′∈U

‖x− x′‖2.

As standard, we call U⊥ the linear subspace {x⊥ ∈ Rn | 〈x⊥,x′〉 = 0, ∀x′ ∈ U}.

Proposition 1.3.1 For each x ∈ Rn and each linear subspace U , ΠU (x) exists and is
unique. Moreover, ΠU (x) is the only vector in U such that ΠU (x)− x ∈ U⊥ (i.e. ΠU is
orthogonal).

Proof. The optimization problem in the definition of projection always has a solution, since
0 ∈ U . For each x, the solution is unique because there exists a unique minimum of the
objective. Let ΠU (x)− x = x̂ + x̂⊥ with x̂ ∈ U , x̂⊥ ∈ U⊥. By the Pythagorean theorem

‖ΠU (x)− x‖2 = ‖x̂‖2 + ‖x̂⊥‖2 ≥ ‖x̂⊥‖2 = ‖ΠU (x)− x̂︸ ︷︷ ︸
∈U

−x‖2.

which by the definition of ΠU implies x̂ = 0 and thus the claim. �
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Proposition 1.3.2 ΠU is linear.

Proof. We need to show homogeneity and additivity of the map ΠU :

ΠU (αx) = arg min
αx′

‖αx− αx′‖ = α arg min
x′

‖x− x′‖ = αΠU (x)

ΠU (x + y) = ΠU (x) + arg min
y′∈U

‖ΠU (x) + y′ − (x + y)‖2

= ΠU (x) + arg min
y′∈U

{‖y − y′‖2 + 2 〈ΠU (x)− x,y′〉︸ ︷︷ ︸
=〈U⊥,U〉=0

} = ΠU (x) + ΠU (y).

The first equality uses the identity arg miny′ f(y′) = y0+arg miny′ f(y0+y′) for y0 = ΠU (x).
In the second equality we have multiplied out the square and dropped terms that are
independent of y′ (and hence do not change the arg min). �

→ For given subspace U the optimal reconstruction map P is the matrix represent-
ing the orthogonal projection ΠU . The optimal linear autoencoder represents
a projection.

1.3.2 Orthogonal Projection Matrices

Q How can we explicitly represent projections as matrices and what representation
can we extract from a solution of the autoencoder?

Example 1.1 The orthogonal projection to the line corresponding to the unit vector u can
be represented as the matrix

Pu = uu> , ‖u‖2 = 〈u,u〉 = 1.

Note that by associativity (uu>)x = 〈u,x〉u. The inner product represents the signed
length of the projected vector,

|〈u,x〉| = | cos∠(u,x)| ‖x‖ ≤ ‖x‖ .

�

We can generalize this example to linear subspaces of arbitrary dimension.

Proposition 1.3.3 For any linear subspace U ⊆ Rn pick an orthonormal basis {u1, . . .uk}
and define

P = UU>, U =
[
u1 . . . uk

]
, Px =

k∑
i=1

〈ui,x〉ui .

Then P is a matrix representation of the orthogonal projection ΠU .

Proof. Clearly im(P) = U as the columns of P span U . One can verify orthogonality via

〈Px,x−Px〉 ∗1= 〈x,Px−P2 x〉 = 〈x, (P−P2) x〉 ∗2= 0, (∀x).

The equalities ∗1 and ∗2 can be identified as self-adjointness (symmetry) and idempotency
properties, respectively. Their proof is left as an exercise (see below). �
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→ The proposition gives an explicit representation of the projection matrix for a
subspace U via choice of an orthonormal basis.

Definition 1.3.2 — Projection, Idempotence. A linear map P : V → V is a projection, if
it is idempotent, i.e. P 2 = P .

R If P is represented as a matrix P, then P2 = P ·P = P.

Definition 1.3.3 — Self-Adjoint. A linear map P : V → V over an inner product space is
self-adjoint if 〈P (x),y〉 = 〈x, P (y)〉 (∀x,y ∈ V ).

R If P is represented as a matrix P over R (or C), then P is symmetric (or Hermitian).

The concepts of idempotency and self-adjointness also characterize orthogonal projections
in the infinite dimensional case.

Proposition 1.3.4 — Hilbert Projection Theorem. A projection P : V → V over a Hilbert
space (complete inner product space) is orthogonal, if it is self-adjoint.

Exercise 1.1 The orthogonal projection matrix P is self-adjoint (∗1) and idempotent
(∗2) (cf. Proposition 1.3.3). �

While the optimal P = VW is a projection matrix, it may not be represented in the
orthonormal form of Proposition 1.3.3. However, if we enforce parameter sharing via V =
W>, then the optimal weight matrix will have to be an orthonormal basis.

Exercise 1.2 If P is a projection matrix and P = W>W then W is orthogonal. �

→ The optimal weight matrix of the autoencoder with tied parameter matrices
V = W> is orthogonal.

1.3.3 Oblique Projection Matrices
Without parameter tying, an optimal solution of the autoencoder will still represent a
projection matrix, yet it will not necessarily factorize as P = UU>, with U orthogonal.

Q What will the optimal weight matrices of the autoencoder represent without
parameter tying?

In a non-orthonormal basis {v1, . . . ,vm} for U one can recover the projection matrix:

Proposition 1.3.5 Define V = [v1 . . .vm] for linearly independent vectors, then

P = VV+, V+ :=
(
V>V

)−1
V>,



16 Chapter 1. Dimension Reduction

is the projection matrix for the subspace U = span{v1, . . . ,vm}.

Proof. Let P be the projection matrix of U . Then Pvi = vi and thus PV = V. As P has
to be of rank ≤ m, the identity matrix is not an option. Define P = VV+, where V+ is
the left Moore-Penrose pseudo-inverse of V. Then

PV = VV+V = V[(V>V)−1V>]V = V, V+ ∈ Rm×n (i.e., rank(V+) ≤ m)

The rank constraint implies Pu⊥ = 0 for u⊥ ∈ U⊥, which yields the claim. �

Corollary 1.3.6 For any V: V+ = arg minWR(W,V).

→ Given V the optimal choice of W will be the left pseudo-inverse of V.

R Note that the columns of V span the subspace U to which the reconstructed data
are confined. The pseudoinverse takes obliqueness of the columns into account and
projects orthogonally to U .

Example 1.2 At this point, we want to include a code example in Python. Let us assume
that we have some way of choosing V. For example, we can consider it to be a matrix with
iid random entries or we can define it by selecting m random data points.

# choice #1: random entries
V = np.random.rand(n,m)

# choice #2: random patterns (here: first m columns of data matrix)
V = X[:,:m]

# optimal choice for W
W = np.linalg.pinv(V)

# example: sklearn.datasets digits
>> Pseudo inverse, random projection, MSE = 0.6805339818228812
>> Pseudo inverse, random data columns, MSE = 0.39583375487949624

As we can see the ’statistical’ randomization, which actually makes use of the data to chose
V is superior. �

1.4 Principal Component Analysis

1.4.1 Variance Maximization
We know that the optimal solution of the autoencoder will implement a projection to a
subspace of dimension m or less, possibly parameterized in oblique form. Yet we are left
with the key question:

Q Which subspaces U are optimal to project onto?
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Note that so far, with the exception of centering, we have not made any reference to the
data law ν. We took this route on purpose as it allows us to understand what the structure
of the model and the choice of objective already implies a priori about its solutions. The
remaining question is to analyze and possibly solve

min→ E‖x−Px‖2, P = UU> projection matrix.

Note that

E‖x−Px‖2 −E‖x‖2︸ ︷︷ ︸
const

= E〈Px,Px〉 − 2E〈x,Px〉 = E〈x, (P2 − 2P)x〉 = −E〈x,Px〉,

where we have used self adjointness and idempotency. In summary:

Proposition 1.4.1 For centered data the reconstruction loss of a projection matrix P is
1
2(Var[x]−Var[Px]).

Proof. As above and noting2 that E‖x‖2 = Var[x], E〈x,Px〉 = E〈Px,Px〉 = Var[Px]. �

Corollary 1.4.2 For centered data, the optimal autoencoder represents the projection P
which maximizes the variance.

→ The optimal autoencoder projects data so as to preserve as much as possible
of their variance.

The above characterization makes use of an expectation over projected data, which (formally)
corresponds to the use of the pushforward measure induced by P. It is useful to express
this in terms of statistics of the original data.

Q What is a sufficient statistics of the data?

Proposition 1.4.3 Var(Px) = tr(PE[xx>]).

Proof. It is elegant to make use of the trace operator, which is linear (commutes with
expectation) and invariant under cyclic permutations of matrix products, specifically

Var(Px) = E〈x,Px〉 = E tr(x>Px) = E tr(Pxx>) = tr(PE[xx>]).

�

→ The optimal projection is fully determined by the covariance matrix of the
data, i.e. E[xx>] are sufficient statistics (together with E[x] used in centering).

2Here, we denote by Var[x] the trace of the covariance matrix of x.
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1.4.2 Principal Components

Q How does the optimal projection relate to the data covariance matrix?

Let us spoil the suspense and state the answer.

Theorem 1.4.4 The rank m projection optimizing the squared reconstruction loss on
centered data is given by the projection matrix formed by m orthogonal, principal
eigenvectors of E[xx>].

Let us work towards a proof, starting from the diagonal case. Note that the covariance
matrix is guaranteed to be positive definite and symmetric by construction.

Proposition 1.4.5 Let E[xx>] = ΛΛΛ = diag(λ1, . . . , λn), λ1 ≥ · · · ≥ λn ≥ 0. A set of m
orthogonal, principal eigenvectors is given by the unit vectors {e1, . . . , em}.

Proof. The unit vectors are orthogonal. They are eigenvectors of any diagonal matrix,
specifically ΛΛΛej = λjej . Clearly, the chosen ordering of the diagonal elements induces the
claimed precedence on unit vectors. Note that in case of multiplicities, the choice of unit
vectors may not be unique. �

Proposition 1.4.6 As in Proposition 1.4.5. The following projection is variance maximizing

P =
m∑
i=1

eie
>
i =

(
Im 0
0 0

)
.

Proof. We are seeking the maximizer of the variance

max
U
→ tr(UU>ΛΛΛ) =

n∑
i=1

λi

m∑
j=1

u2
ij , s.t. U>U = Im

1. We want to show that
∑m

j=1 u
2
ij ≤ 1 (∀i). Assume that it would not hold for i, then

‖Pei‖2 = e>i P>Pei = e>i UU>ei =
∑
j

u2
ij

?
> 1,

which contradicts the non-expansiveness of a projection (i.e. eigenvalues are in {0, 1}).

2. The Frobenius norm is given by
∑

ij u
2
ij = tr(Im) = m.

3. As the diagonal elements are ordered in decreasing magnitude any U such that∑m
j=1 u

2
ij = 1 for i = 1, . . . ,m would be optimal (if it exists).

4. The claimed form of P has exactly this extremal property.
�

Theorem 1.4.7 — Spectral Theorem. Any symmetric and positive semidefinite matrix ΣΣΣ
can be non-negatively diagonalized with an orthogonal matrix

ΣΣΣ = QΛΛΛQ>, ΛΛΛ = diag(λ1, . . . , λn), λ1 ≥ · · · ≥ λn ≥ 0, Q orthogonal.
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Corollary 1.4.8 The variance maximizing projection for a covariance matrix ΣΣΣ as in
Theorem 1.4.7 is given by

P = UU>, U = Q

(
Im
0

)
.

Proof. By Theorem 1.4.7 and Proposition 1.4.5 and using cyclicity of the trace

tr(UU>ΣΣΣ) = tr((Q>U)>ΛΛΛ(Q>U)), maximized by Q>U =

(
Im
0

)
.

�

This concludes the proof of Theorem 1.4.4 by identifying the maximizer in Corollary 1.4.8
with a matrix build out of m principal vectors of ΣΣΣ = E[xx>]. �

→ The linear autoencoder network performs principal component projection.
However, it is not guaranteed to identify the PCA basis (i.e. the principal
eigenvectors), but only the m-dimensional principal subspace of E[xx>].

1.4.3 Eigenvectors of Symmetric Matrices

Q Why eigenvectors?

The eigenvectors played a prominent role in the analysis of this section, but one may wonder
what is special about them? After all, they are defined in a way that seems unrelated to
variance maximization. We focus here on the important subclass of symmetric matrices to
confine the material.

As we have seen, symmetric matrices are representations of self-adjoint linear maps.
Their diagonalization as expressed in the spectral theorem 1.4.7 essentially states that they
are diagonal, when represented in the right choice of orthonormal basis. This is because
orthogonal matrices are basis transformations between orthonormal bases.

Definition 1.4.1 — Eigenvector, Self-Adjoint. u 6= 0 is an eigenvector of a symmetric
matrix A, if there exists a λ ∈ R such that Au = λu.

The principal eigenvector is related to the 2-norm or spectral norm of a matrix.

Proposition 1.4.9 Let A be symmetric with principal (unit) eigenvector u, i.e. Au = λu,
λ = max{λmax(A),−λmin(A)}, then

‖Au‖ = max
v:‖v‖=1

‖Av‖.

Proof. This is easily checked in the diagonal case and remains true under change of
orthonormal basis. �

Note that if ΣΣΣ is a covariance matrix, 〈u,ΣΣΣu〉 is the variance of the projected real-valued
random variable. Obviously, projecting on a principal eigenvector maximizes the variance.

The second important fact about eigenvectors of symmetric matrices is that they are
essentially pairwise orthogonal.



20 Chapter 1. Dimension Reduction

Proposition 1.4.10 Eigenvectors of symmetric matrices with distinct eigenvalues are
orthogonal.

Proof. Let Au = λu, Au′ = λ′u′, λ 6= λ′. Then

λ〈u,u′〉 = 〈λu,u′〉 = 〈Au,u′〉 = 〈u,Au′〉 = 〈u, λ′u′〉 = λ′〈u,u′〉 λ 6=λ′
=⇒ 〈u,u′〉 = 0.

�

Example 1.3 As a counterexample: all vectors are eigenvectors of I with eigenvalue 1. �

We can identify the second, third etc. subprincipal eigenvectors as principal eigenvectors
of a sequence of matrices, which we obtain by projecting out the chosen direction.

A′ = A− λuu> s.t. A′(αu) = αλu− αλu‖u‖ = 0. (1.3)

In the (sorted) diagonal view, this simply zeros out the maximal eigenvalue.

Q>AQ = diag(γ1, γ2, . . . , γn) 7→ diag(0, γ2, . . . , γn) = Q>A′Q. (1.4)

This is to say that the (k + 1)-th subprincipal unit eigenvector maximizes the variance of
the projection (or the norm of the image) subject to orthogonality to the first k principal
eigenvectors. This procedural view is also true in the case of (geometric) multiplicities of
eigenvalues. One can then simply chose any orthonormal basis for the respective subspaces
spanned by eigenvectors with the same eigenvalue.

→ Unit eigenvectors of a symmetric, positive semidefinite matrix form an or-
thonormal basis in which the order of principality agrees with the magnitude
of the norm of their image and – in the case of covariance matrices – the order
of the variance of their projection.

1.5 Learning Algorithms
1.5.1 Matrix Computations

We can compute what the autoencoder aims to learn without having to make reference
to the diagrammatic representation. There is a rich body of algorithms in the area of
matrix computation [16] that can be used to diagonalize a symmetric positive semi-definite
matrix. As this is specialized material from numerical linear algebra, we will not pursue
this direction further. One can find implementations of methods in LAPACK, which can
be used through the numpy.linalg library (e.g. eigh).

Example 1.4 There is a special function in numpy for computing eigenvectors of symmetric
(or Hermitian) matrices. We have to select the last m columns.

covar = np.cov(X)
evals, evecs = np.linalg.eigh(covar)
V = evecs[:,-m:]
W = np.transpose(V)

>> Principal eigenvectors, MSE = 0.2658367979102716

�
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1.5.2 Power Method

There is a very simple, yet scalable and easy to analyse algorithm for computing a principal
eigenvector. Initializing at random v(0) ∼ N (0, I), one computes the iterate sequence

v(t+1) =
Av(t)

‖Av(t)‖
. (1.5)

Proposition 1.5.1 Let u1 be the unique principal vector of a diagonalizable matrix A
with eigenvalues λ1 > λ2 ≥ · · · ≥ λn ≥ 0. Then the power iterates limt→∞ v(t) = u1 if
〈v0,u〉 6= 0.

Proof. Represent v(0) in the eigenbasis as v(0) =
∑

i αiui, where α1 6= 0. Then

v(k) ∝ α1u1 +
∑
i>1

αi

(
λi
λ1

)k
ui, where

λi
λ1

< 1 for i > 1 .

Hence the sum converges to 0 and by virtue of the normalization v(k) → u1. �

Exercise 1.3 How can the power method be used (naïvely) to compute a principal
subspace? �

→ The power method is very simple and intuitive, yet often inefficient algorithm
to identify the principal eigenspace of a symmetric matrix.

If the goal is to identify a principal eigenspace, one can improve on this by performing
Arnoldi iterations, which can be further optimized for symmetric positive semidefinite
matrices in Lanczos algorithm. The idea is to make use of intermediate results and to
approximately and iteratively construct an eigenbasis. The idea is to form the Krylov
matrix

K =
[
v Av A2v . . . Akv

]
, (1.6)

and to orthogonalize its vectors via a variant of the Gram-Schmidt process

vj = vj − 〈vj ,vk+1〉, j = 1, . . . , k (1.7)

to get an orthogonal basis of the Krylov spaces. In each iteration one also keeps track of
the inner products, which form a so-called upper Hessenberg matrix.3

Further Reading. The interested reader can find the precise convergence rates for
the Lanczos algorithm and the Power Method in the seminal paper by Kuczyński and
Woźniakowski: “Estimating the largest eigenvalues by the power and Lanczos algorithms
with a random start” [29].

3
https://en.wikipedia.org/wiki/Arnoldi_iteration

https://en.wikipedia.org/wiki/Arnoldi_iteration
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1.5.3 Gradient Descent
Another very generic and scalable approach is to treat the autoencoder as a neural network
and use the workhorse of Deep Learning, namely stochastic gradient descent. At the core
of these methods, one needs to compute the parameter gradient of the squared loss for a
single data point.

`(x; P) = 1
2〈x−Px,x−Px〉 =

1

2
‖x‖2 − tr(Pxx>) +

1

2
tr(P>Pxx>) (1.8)

from which the simple4 rules of differentiation

∇A tr(AB) = B>, ∇A tr(A>AB) = AB> + AB,

yield

∇P`(x; P) = (P− I)xx> . (1.9)

Furthermore by the chain rule for matrix derivatives5

∇W`(x; VW) = V>(P− I)xx>, (1.10)

∇V`(x; VW) = (P− I)xx>W> . (1.11)

Stochastic gradient descent (SGD) then picks a data point at random (∼ ν or uniformly
from the sample) and evolves the iterates

W←W − η∇W`(x; VW), V← V − η∇V`(x; VW), η > 0 . (1.12)

We will not get into the topic of analyzing gradient descent or SGD at this point. We
conclude by showing some code for batch gradient descent. Note that we can reduce the
data to its sufficient statistics beforehand, making the computation vastly more efficient if
the data dimensionality is smaller than the sample size.

Example 1.5 We can directly re-write the above equations in NumPy, replacing xx> with
the covariance matrix.

Delta = (V@W-np.identity(n)) @ covar
gradV = Delta @ np.transpose(W)
gradW = np.transpose(V) @ Delta
V = V - eta * gradV
W = W - eta * gradW

�

→ Gradients for weight matrices can easily be derived and used as the basis for
(stochastic) gradient descent. This can leverage tools from Deep Learning.

Exercise 1.4 Implement parameter sharing via W = V> and modify the gradient-based
learning. Is there an advantage? Investigate this experimentally. �

4
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

5Or, alternatively, the cyclic property and the formula ∇A tr(A>BAC) = BAC+B>AC>.

https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
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Exercise 1.5 Implement a version of the linear autoencoder that extracts the PCA basis.
How can you modify the objective and how does that change the gradient? Visualize
the eigenimages. �

1.6 Non-Linear Autoencoder

Do Add some example project and code to train deep autoencoders, e.g. Fahsion-
MNIST6. Show simple use of PyTorch and vision libraries. Benchmark relative
to linear autoencoder.

1.7 Conclusion
1. It is important to reflect on the model structure, e.g. identifiability, as well as possible

data preprocessing.
2. The choice of objective function often has a profound influence on the solution, e.g. the

squared error is directly tied to (orthogonal) projections.
3. It is often helpful to characterize the solution mathematically. Where this is not

possible for the model under consideration, simplifications should be considered.
4. Mathematical insights also directly inform the choice of learning algorithm. There is

a trade-off then between specialized methods and generic ones.

6https://debuggercafe.com/implementing-deep-autoencoder-in-pytorch/

https://debuggercafe.com/implementing-deep-autoencoder-in-pytorch/




2. Matrix Approximation

In this chapter we study the fundamental problem of matrix approximation. Given a matrix
A ∈ Rn×m, there are typically two related types of questions. First, we assume that a
subset of entries is given exactly and we need to fill in the missing entries – this is commonly
known as matrix completion or matrix reconstruction. Second, we assume to observe
noisy entries of a matrix and want to infer the underlying matrix based on some a priori
assumptions on the ground truth. In both cases, low rank matrices play a fundamental role
and so do approximate factorizations of A into a product of matrices A ≈ UV with small
inner dimension.

2.1 Collaborative Filtering
2.1.1 Matrices with Interdependent Entries

We are interested in the following problem: Assume that we are given a (sparse) matrix A
for which a fraction of the entries has been observed, can we fill in the missing entries and
reconstruct the underlying matrix?

A =

3 ? ? 2
0 1

2 ? ?
? ? −2 −4

5

 completion
=⇒ ? (2.1)

Without further specification, the problem is obviously ill-posed: if entries are generated
independently at random, then there is no information in observed entries about unobserved
ones. However, in case of practical interest there will be dependencies between entries. For
instance, if the rows and column of the matrix are meaningful, then we expect (at least)
the entries within the same column or the same row not to be independent. Hence they
will carry information about each other, which may allow reconstructing or approximating
missing entries.

→ A minimal assumption in matrix reconstruction is that entries within the same
row or the same column are not independent.
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What are the implications of such a minimal dependency assumption? Are entries that
neither share a row, nor or column, “independent" of each other and in which sense? To
add precision, let us treat matrix entries as random variables (i.e. noisy measurements).
The minimal dependence assumption can then be described via conditional independence:

aij ⊥⊥ {akl : k 6= i ∧ l 6= j} | {ail : l 6= j} ∪ {akj : k 6= i} (2.2)

In plain English: conditioning on all entries in the row and column of an entry aij renders
it independent of the rest of the entries. However note that it immediately follows from
the rules of probability that indirect dependencies between all entries emerge, if we do not
observe all entries in the corresponding row and column. In particular, we may not assume
that any two entries are marginally independent aij 6⊥⊥ akl for any ij, kl. Such non-trivial
dependency structures make matrix completion and reconstructing a challenging problem.

→ Even under restrictive conditional independence assumptions, whenever a
matrix is only partially observed, it effectively creates (indirect) couplings
between all entries.

2.1.2 Recommender Systems
There is a classical problem in the area of user preference modeling, which is closely tied
to the development of recommender systems. In such systems, the goal is to be able to
recommend or pre-select relevant items in a personalized manner, based on a person’s
history or profile. Recommender systems have been invented in the early 1990s and are
today in widespread use on the internet, powering applications, for instance, in e-commerce
and social media, where ratings are solicited for movies, news, restaurants, products etc.
We will abstract away from the specific domain and assume that people rate items on some
ordinal rating scale, e.g. the popular 1-5 star scale or numerical rating from 1-10. We will
use the convention that columns of the rating matrix corresponds to items and the rows to
people or users.

→ In recommender systems, the matrix to be completed consists of ratings
provided by users (rows) about items (columns).

As an example data set, we make use of the Movielens data set.
The typical challenge with such data sets is that ratings are only partially known,

leading to highly sparse data. For instance, the famous Netflix Prize data set contains
over 100M ratings solicited from 480k people, which means there are roughly 200 ratings
per person (which is quite a lot), however, there are more than 17k movies, leading to a
sparsity of about 1%. In many applications, sparsity can be much lower than that and
easily dropping to the per mille range and below.

2.1.3 Collaborative vs. Content-Based Filtering
In designing recommender systems, one distinguishes collaborative filtering and content-
based filtering. In the later case, one aims to build feature-based predictors, possibly in
a custom manner for each person. However, as the per user data is scarce, this is often
infeasibility. In addition, it may be difficult to extract predictive features from items such
as music, images, or video. The key idea of collaborative filtering is to instead exploit
the similarity between people’s ratings to learn from the collective data provided by the
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community or customer base as a whole. Note that in practice, one would typically aim to
exploit both sources of information and design hybrid systems.

There are also other relevant distinctions, most importantly the one between explicit
preference solicitations (like described above) and implicit preferences. In the later case,
users are typically not asked to provide feedback, but reveal preferential choices in their
actions, for instance, by choosing one item over other alternatives (click, purchase, view,
etc.). Here we will focus solely on explicit preference ratings.

2.1.4 Preprocessing
There is an often neglected aspect that we want to briefly point out, which is the question
of data preprocessing. We always have to ask, what assumptions a model is making about
the data, for instance, its measurement scales or about possible invariances? Specifically, in
the case of ratings, we may want to consider shift and scale dependencies, also in a person-
or item-specific manner. Let the rating matrix by given by A ∈ Rn×m, where n is the
number of people and m the number of items. We can compute mean ratings per item or
person, writing in matrix form

µµµrow =
1

m
A1m ∈ Rn, µµµcol =

1

n
A>1n ∈ Rm (2.3)

and then normalize either way

A
rows←− A

[
Im×m −

1

m
1m1>m

]
, A

cols←−
[
In×n −

1

n
1n1

>
n

]
A (2.4)

Exercise 2.1 Verify that the above matrix formulas indeed normalize rows and cols,
respectively. �

However, the formulae for the row and column means are only true in the fully observed
case. In the partially observed case, we introduce an observation matrix

Ω ∈ {0, 1}n×m : ωij = 1 ⇐⇒ aij observed (2.5)

such that we can define the average ratings

µrow
i =

∑
j ωijaij

max{1,
∑

j ωij}
, µcol

j =

∑
i ωijaij

max{1,
∑

i ωij}
, (2.6)

and then center ratings by

aij
row←− aij − µrow

i or aij
col←− aij − µcol

j (2.7)
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Sometimes it may also make sense to normalize the variance to 1. Again, this can be
done in a per row (item) or column (people) manner.

Definition 2.1.1 Let X be a score with E[X] = µ and Var[X] = σ2, then its standardized
score (or z-score) is given by

Z =
X − µ
σ

As many matrix models (as discussed below) may not be invariant to such transformations,
one has to use domain knowledge and/or use some degree of experimentation.

R In the early collaborative filtering systems in the 1990s it was believed to be most
natural to z-score normalize ratings per user or person. This way, one would account
for certain users being generally more positive or negative or make different use of
the dynamic range of the rating scale. However it was then a ’research discovery’ (see
[39], highly cited) to find that normalizing items (i.e. the transposed view) was more
effective.

Exercise 2.2 Take the MovieLens data set and mean-normalize (a) columns, (b) rows to
zero. Calculate a prediction for missing values and compare the mean squared error of
(a) vs. (b) on the test data, where the column and row means, respectively, are used to
fill-in the missing ratings. �

2.2 Rank 1 Model

We will start with a simple rank 1 model that will be analyzed and discussed in detail to
build-up intuitions. This also highlights the importance to start simple to pave the way for
more complex and sophisticated models.

Q What is the simplest – yet interesting – matrix model that couples entries in
each row and each column?

2.2.1 Outer Product Model
Our starting point will be a simple model that associates a single parameter with each
row and column (cf. discussion above). It seems natural to consider a bi-linear model of
matrices

A ≈ uv>, u ∈ Rn, v ∈ Rm . (2.8)

In this model we approximate each entry by a product aij ≈ uivj , where a scalar parameter
ui is associated with the i-th row and vj with the j-th column. Note that we have n+m
parameters to determine a total of nm matrix entries, which makes the model parsimonious.
There is an obvious non-identifiability in the model as we can scale u by some α ∈ R− {0}
and simulatenously v by 1/α to leave their outer product invariant. Using the squared
error as a loss function then results in the optimization problem

u,v→ min `(u,v) :=
1

2
‖ΠΩ(A− uv>)‖2F . (2.9)
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Here the projection to ΩΩΩ is defined as

ΠΩ(R) = R�ΩΩΩ, �: Hadamard product (2.10)

R By the definition of the Frobenius norm, this can be equivalently written as

`(u,v) =
1

2

∑
i,j

ωij(aij − uivj)2 .

The matrix notation will turn out to be helpful subsequently.

R Note that u,v are determined solely based on the observed values, however they
extrapolate to a full matrix. It is clear that if there are rows or columns without
any observations, the corresponding parameters cannot be identified (and are thus
arbitrary)

Proposition 2.2.1 Every rank 1 matrix can be represented as an outer product of two
vectors and every pair of vectors defines a rank 1 matrix via their outer product.

→ The outer-product model approximate a matrix over the space of rank one
matrices.

2.2.2 Scalar Case
To gain insights into a model it is often illuminating to start with the simplest possible
special case and see what properties emerge. In the above case, let us look at the scalar
problem,

`(u, v) =
1

2
(a− uv)2 (2.11)

We want to find two numbers whose product equals a third. Let us look at the gradient
field induced by the squared error, which for a = 1 is depicted in Figure 2.1. By the chain
rule

∂`

∂u
= δv,

∂`

∂v
= δu, δ := uv − a (2.12)

It is clear that the gradient is zero (red lines) on a hyperbola with two branches. Performing
gradient descent will – dependent on the starting point – lead to some point on the hyperbola.
What happens at the origin? There is also an isolated critical point at the origin, which
can be seen to be a saddle point as

∇2`(u, v) =

(
v2 2uv − a

2uv − a u2

)
, ∇2`(0, 0) =

(
0 −a
−a 0

)
(2.13)

and the characteristic polynomial of the later is

det(λI−∇2`(0, 0)) = λ2 − a2 = (λ− a)(λ+ a) (2.14)

which means the Hessian matrix is indefinite at the origin as it has eigenvalues −a and a.
Unless a = 0, the saddle point always has an escape direction (i.e. a direction of negative
curvature).
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Figure 2.1: Gradient flow of 1
2(1− uv)2. Zero loss hyperbola in red, exemplary gradient

flow trajectories in green.

→ The critical point set of ` = 1
2(a− uv)2 is a minimizing hyperbola as well as a

saddle point at the origin, which is unstable under gradient dynamics.

2.2.3 Convexity
Let us connect this observation to the important concept of convexity.

Definition 2.2.1 A set in a vector space or affine space is convex if the line segment
connecting any two points in the set is also in the set.

Definition 2.2.2 A function f is convex over a domain R, if for all x, y ∈ R

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y), ∀t ∈ [0; 1]

Proposition 2.2.2 If f is differentiable, convexity is equivalent to the condition

f(x) ≥ f(y) +∇f(y) · (x− y), ∀x, y ∈ R

Proposition 2.2.3 If f is twice differentiable, convexity on a convex domain R is equivalent
to the condition

∇2f(x) � 0, ∀x ∈ Int(R)

We see that the objective in (2.11) is non-convex except for the special choice of a = 0,
which follows from the fact that a saddle point exists at the origin. Convexity is a very
fundamental property and it is an important demarcation line in optimization between
tractable and (possibly) intractable problems. As we will see, matrix completion is a
problem that while being non-convex can be analyzed in-depth, approximated well in
practice and solved exactly for some special cases.

Going back to the general case, let us calculate the gradient. We can do this elementary
via the partial derivatives, which directly generalizes the scalar case

∂`

∂ui
=
∑
j

(uivj − aij)vj ,
∂`

∂vj
=
∑
i

(uivj − aij)ui . (2.15)
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It is often more compact to write it in vector/matrix notation.

∇u` = Rv, ∇v` = R>u, R := (uv> −A) (2.16)

We can derive this equation either by re-vectorizing the formula for the partial derivatives
or by using multivariate calculus with the Frobenius norm

`(u,v) = 1
2‖R(u,v)‖2F , ∇R

1
2‖R‖

2
F = R . (2.17)

Exercise 2.3 Use the above formula to derive the gradients. �

As far as convexity is concerned, let us also derive the Hessian for the multivariate case

∇2`(u,v) =

(
‖v‖2In×n 2uv> −A

(2uv> −A)> ‖u‖2Im×m

)
, ∇2`(0,0) =

(
0 −A
−A> 0

)
(2.18)

We see that the step from the simple scalar case to the multidimensional case involves more
abstract vector calculus, but is essentially small. Again, the Hessian at zero is not positive
semi-definite, unless A is nilpotent (has all zero eigenvalues). The problem is non-convex
in all dimensions m,n.

→ The outer product matrix reconstruction objective is generally non-convex.

2.2.4 Gradient Dynamics
We will investigate different algorithms for the matrix reconstruction problems below. But
right now, let us try to get an understanding of the gradient dynamics, if we were to
iteratively minimize the objective via gradient descent. We use this as an illustration of
ODEs (ordinary differential equations) to understand gradient flows (i.e. the dynamics of
gradient descent in the limit of small step sizes) and will focus on the case n = m = 1.
Assume (as a simplification) that a > 0 and we initialize u = v = c ∈ R, typically to a
small (but non-zero – remember the saddle point!) value. This case is easier as u and v
evolve in-synch and we can study the evolution of x = uv = u2. First of all, note that the
negative gradient flow relates the rate of change of a variable to its negative derivative:

du

dt
= −v(uv − a),

dx

dt
=
du2

dt
= −2uv(uv − a) = −2x(x− a) (2.19)

We can now solve this ODE manually or make use of a symbolic solver like Mathematica

Dsolve[x’(t) = 2ax(t)-2x(t)^2,x(0)==c^2]

This yields the analytic solution

x(t) =
ae2at

e2at − 1 + a/c2
= a+

ac2 − a2

c2e2at + a− c2
(2.20)

from which we can determine how long it takes to get ε close to the target a.

Exercise 2.4 Solve x(t) = |a− ε| for t to determine how long it takes to get ε close to
the optimum at x = a �
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Figure 2.2: Solution of the ODE for a = 1 and starting point c = 0.01.

→ The negative gradient flow converges to a solution on the hyperbola, if initialized
(u(0), v(0)) 6= (0, 0) (shown for the special case u(0) = v(0), true in general).
The solution can be analytically calculated.

So in summary, we see that although the objective is non-convex, in special cases even
simple first order methods like gradient descent will find the global optimum (here only
shown in the continuous time limit, revisited later). Reflecting on the analyses pursued
above, we want to stress again the usefulness of simple back-of-the-envelop calculations to
gain insights into qualitative (convexity, critical points) as well as quantitative aspects of
the problem (gradient flow dynamics).

2.2.5 Fully Observed Matrix
Let us conclude our discussion of the rank 1 model by considering the case where all matrix
elements are observed. This setting is sensible, if we knew that the underlying matrix is of
rank 1, yet entries have been corrupted (iid by additive Gaussian noise). We will make use
of a little trick that is often helpful.

Proposition 2.2.4 ‖R‖2F = tr(R>R)

Proof.

tr(R>R) =
∑
i

[∑
j

rijrij

]
=
∑
i,j

r2
ij = ‖R‖2F

�

This allows us to rewrite the objective function

`(u,v) =
1

2
‖A− uv>‖2F =

1

2
tr(A>A−A>uv> − vu>A + vu>uv>) (2.21)

Because of the linearity of the trace, we can break this up into four trace terms, of which
the first is constant (and can be dropped). Moreover, as the trace is invariant under cyclic
permutations of matrices, we get two relevant terms

`(u,v) = const +
1

2
tr(u>u v>v)− tr(u>Av) =

1

2
‖u‖2‖v‖2 − u>Av (2.22)

The directionality of u,v is purely determined by the last term, so we can solve for unit
vectors (and then rescale)

(u,v) −→ max{u>Av}, s.t. ‖u‖ = ‖v‖ = 1 (2.23)
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How do we solve such a problem? We use Lagrange multipliers and write

L = u>Av − λ u · u− µ v · v (2.24)

which yields

∇uL = Av − 2λu
!

= 0 =⇒ u =
Av

‖Av‖
, [...] =⇒ v =

A>u

‖A>u‖
(2.25)

If we put these two optimality conditions together, we get the eigenvector equations

u ∝ (AA>)u, v ∝ (A>A)v (2.26)

As we maximize the objective, this implies that u should be proportional to the principal
eigenvector of the matrix AA>, whereas v should be proportional to the principal eigenvector
of A>A. Note that we can compute both simultaneously via power iterations, which
computes u and v in alternation via (2.25).

Exercise 2.5 Show that the scaling factor of u∗ can be recovered from the unit vector u
via Av (whereas we can leave v∗ = v a unit vector – why?). �

We will generalize this result in the context of the Singular Value Decomposition (SVD).

2.3 Singular Value Decomposition
2.3.1 Definition & Properties

The Singular Value Decomposition (SVD) is an indispensable tool for algorithms and
analysis alike. Let us first provide a precise formal definition.

Theorem 2.3.1 For each matrix A ∈ Rn×m, there exists orthogonal matrices U ∈ Rn×n
and V ∈ Rm×m such that A can be expressed as

A = UΣΣΣV>, ΣΣΣ = diag(σ1, . . . , σmin{n,m}), σi ≥ σi+1 (∀i)

Here a rectangular diagonal matrix is a matrix with entries on the main diagonal, padded
with zeros. The set of singular values in the SVD are unique, however the left/right singular
vectors (columns or U and V) can have arbitrary sign. In the case of multiplicities of
singular values, corresponding subspaces (but not their basis vectors) are unique.

We will first show how the SVD relates to matrix norms.

Proposition 2.3.2 Let the SVD of A ∈ Rn×m be given by A = UΣΣΣV>, then

‖A‖2F =

min{n,m}∑
i=1

σ2
i

Proof. Making use of the properties of the trace

tr(A>A) = tr(VΣΣΣ>U>UΣΣΣV>) = tr(VΣΣΣ>ΣΣΣV>) = tr(ΣΣΣ>ΣΣΣV>V))) = tr(ΣΣΣ>ΣΣΣ)

�
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Proposition 2.3.3 Let the SVD of A ∈ Rn×m be given by A = UΣΣΣV>, then

‖A‖2 := sup{‖Ax‖ : ‖x‖ = 1} = σ1

Proof. Orthogonal matrices preserve the Euclidean norm

sup{‖Ax‖2 : ‖x‖ = 1} = sup{‖ΣΣΣV>x‖ : ‖x‖ = 1} = sup{‖ΣΣΣz‖ : ‖z‖ = 1} = ‖ΣΣΣ‖2

Noting that the 2-norm of a diagonal matrix is given by the largest absolute value of its
elements. �

2.3.2 SVD and Low-Rank Approximations

The following theorem is fundamental to many low-rank approximation problems. It states
that by pruning the singular values below σk in the SVD representation, we get an optimal
rank k approximation of a matrix. This means that approximations for any k can directly
be read-off the SVD.

Theorem 2.3.4 — Eckart-Young. Given A ∈ Rn×m with SVD A = UΣΣΣV>. Then for each
1 ≤ k ≤ min{n,m}

Ak := U diag(σ1, . . . , σk)V
> ∈ arg min{‖A−B‖F : rank(B) ≤ k} .

Corollary 2.3.5 The squared error of low rank approximations can be expressed as

‖A−Ak‖2F =

rank(A)∑
i=k+1

σ2
i

Proof. Follows easily from Proposition 2.3.2 as

A−Ak = U diag(0, . . . , 0, σk+1, . . . , σmin{n,m})V
> .

�

It is clear that by pruning the singular values, one can also prune respective columns of U
and V, creating what is know as a reduced SVD representation, which is more compact for
computations. It turns out that the optimal low-rank approximation is also the best in
terms of spectral norm

Proposition 2.3.6 The matrix Ak as defined in the theorem above fulfills

Ak ∈ arg min{‖A−B‖2 : rank(B) ≤ k} .

2.3.3 SVD and PCA

The SVD is intimiately related to eigendecomposition. First note that if A is square
symmetric, then U and V have equal columns up to possible sign differences. Note that all
eigenvalues of a symmetric matrix are real (but can be negative), yet the singluar values
are always non-negative. If A is also positive semi-definite, then the SVD is equal to
the eigendecomposition. The more interesting connection to spectral decompositions is to
consider the “squares" of A, namely AA> ∈ Rn×n as well as A>A ∈ Rm×m. Here we see
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that by simply writing out

AA> = UΣΣΣΣΣΣ>U> = U diag(σ2
1, . . . , σ

2
n)U>, (2.27)

A>A = V>ΣΣΣ>ΣΣΣV = V diag(σ2
1, . . . , σ

2
m)V>, (2.28)

where we have used the convention σr = 0 for min{n,m} < r ≤ max{n,m}.
How does this apply to PCA? Remember that we need the eigendecomposition of the

covariance matrix E[xx>], which in the case of a finite sample is 1
sXX>, where X is the

data matrix, containing patterns as rows. In this case the SVD of X can directly give us
the desired principal eigenvectors as the columns of the matrix U.

→ SVD can be applied to the data matrix to identify the principal eigenvectors
of the covariance matrix (PCA).

2.3.4 SVD for Matrix Completion

A natural generalization of the simple rank 1 model discussed above is to consider rank
k approximations. Note that these are essentially (additive) superpositions of k rank 1
matrices. If the matrix entries are completely observed, then the solution is represented
via the SVD and also computable as such. To point out the obvious: the k principal left
singular vectors, paired with the respective right singular vector counterpart are exactly
these vectors forming outer products.

A ≈
k∑
i=1

σiuiv
>
i (2.29)

Coming back to the discussion above, we re-iterate that the low-rank approximation problem
is non-convex, which includes the completely observed case. Hence, as SVD is efficiently
computable with O(min{nm2,mn2}) operations, this is an important example of a solvable
non-convex problem.

→ In the completely observed case, we can use SVD to calculate the best low-rank
approximation of a matrix.

SVD has also been used at times in the context of collaborative filtering. However, this
means we need to explicitly or implicitly impute values for the missing entries, for instance
by identifying them with zeros. This is problematic as the semantics of a missing value is
different from an observed zero. So this requires at the very least a mean normalization of
rows or columns in order to make the zero point more meaningful. Even so, this is not a
recommended approach in general.

→ In the case of incomplete observations, SVD is in general not applicable directly
to compute low-rank approximations.
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2.3.5 NP Hardness
Low-rank matrix approximation with a weighted Frobenius norm is defined as follows:

Âk = arg min
{∑

i,j

wij(aij − bij)2, rank(B) = k
}

(2.30)

where typically the weights are positive wij > 0 or binary wij = ωij ∈ {0, 1} (as in the case
of partial observations). In both cases the problem has been shown to be NP- hard [15],
even for k = 1.

→ Low rank matrix reconstruction is NP hard and one has – in general – to resort
to approximation algorithms. The completely observed case is special.

2.4 Alternating Least Squares
2.4.1 Parameter Interactions and Separability

Let us work with the factored parameterization via U ∈ Rn×k and V ∈ Rk×m such that
A ≈ UV and an approximation error described by the (non-convex) objective

`(U,V) =
1

2
‖ΠΩ(A−UV)‖2F + λ(‖U‖2F + ‖V‖2F ), λ > 0 (2.31)

The additional regularization of the factor matrices is somewhat optional, but increases
numerical (and statistical) stability.

Q How do parameters interact?

It is important to understand interactions between parameters as it is closely linked to
the structure of the problem and can often be exploited. First note that the objective is a
polynomial of degree 4 in the parameters with the following monomials

ωijuirvrjuisvsj 1 ≤ r, s ≤ k (2.32)
ωijuirvrj 1 ≤ r ≤ k (2.33)

u2
ir, v

2
rj from the regularizer (2.34)

From this we can directly read-off an important property by observing that all higher order
products only involve exactly one row index i of U and one column index j of V.

→ The parameter dependencies in the non-convex objective for matrix factorization
form a bipartite graph between the rows of U and the columns of V.

2.4.2 Separable Least Squares Problems
Because of the dependence (or rather independence) structure of the parameters we can
separate out the part of the objective that depends on a column vj of V (and completely
analogous a row ui of U) as follows

`U(vj) =
1

2
v>j

(∑
i

ωijuiu
>
i + 2λI

)
vj −

(∑
i

ωijaiju
>
i

)
vj (2.35)
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Now if we treat U as a fixed matrix (and not a set of parameters), we can easily solve for
each vj as this is just a least squares problem, which has the solution

v∗j =
(∑

i

ωijuiu
>
i + 2λI

)−1 (∑
i

ωijaijui

)
(2.36)

Note that this involves the inverse of a k×k matrix, which is usually small in comparison to
n and m. The regularization ensures invertability. Such explicit formulae may not only offer
insights, but also significant advantages over generic optimization methods like gradient
descent.

Exercise 2.6 Derive the explicit equation for the solution shown above and comment on
its existence and uniqueness. �

→ The separable subproblems are least squares problems of dimension k.

2.4.3 Alternating Subspace Optimization

Q How can we exploit the separability structure of the problem for optimization?

The algorithmic idea to exploit the problem structure is simple and intuitive. Given a
choice of U, we can (efficiently) minimize each of the m subproblem for {vj}. Note that
this can be done with a high degree of parallelism. Effectively, we are iteratively optimizing
over the subspace of parameters V keeping U fixed. Then we transpose the perspective
and keep V fixed, optimizing over each of the n subproblems related to rows {ui}. While
gradient descent makes a small update to all parameters, here we make no update to one
“half” of the parameters, yet chose the other “half” in an optimal way. At an abstract level
the algorithm hence alternates the two steps

Vt+1 ← arg min
V

`(Ut,V), Ut+1 ← arg min
U

`(U,Vt+1) (2.37)

As both steps optimize the same objective (only with regard to a complementary set of
parameters), it is clear that ` will be monotonically decreasing under such alternating
updates. Since ` ≥ 0 is lower bounded, the ALS algorithm will converge towards a fixed
point.

→ ALS is an iterative algorithm that monotonically improves the objective and
that converges to a fixed point.

In general, we cannot expect the solution of ALS to be the global minimizer of the problem,
unless in special cases. The termination condition of ALS does not imply that there cannot
be mixed update directions, where progress is possible. However, note the gradient vanishes
at a fixed point of ALS

V∗ = arg min
V

`(U∗,V), U∗ = arg min
U

`(U,V∗) =⇒ ∇`(U∗,V∗) = 0 (2.38)

The latter is clear as if there was any non-zero partial derivative, then we could improve
by optimizing over the respective subspace (either U or V), which contradicts the fixed
point condition of ALS. In fact we also know that the two diagonal blocks of the (U,V)-
partitioned Hessian are positive definite (we have shown above that these are least squares
problems). This analysis shows that ALS may converge to a local minimum, but leaves
open the possibility that it may lead to a saddle point.
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2.4.4 Program Code
Python offers support for sparse matrices in different storage formats (optimised for different
use cases) via the library scipy. Some simple program code to generate sparse matrix with
random sparsity pattern and random 5 star ratings is shown below.

# generating some random sparse matrix
def rand5star(num): # 5 star scale

return np.random.randint(1,6,size=num)
A = scipy.sparse.random(rows,cols,0.1,data_rvs=rand5star,format=’csr’)

print(A.A) =>
[[0. 0. 0. 0. 0. 4. 0. 0. 0. 3.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 5. 0. 2. 0. 0. 0. 0. 3. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]]

In implementing ALS, the offset vectors can be computed via

B = U.transpose() @ A # rank x cols

and for the quadratic part we can compute all relevant rank 1 matrices

Q = np.ndarray((rows,rank,rank))
for row in range(rows):

Q[row] = U[row,:].transpose() @ U[row,:]

We can then update V as specified in equation (2.36) as follows:

for col in range(cols):
sum_r1_mat = 0
for row in range(rows):

if A[row, col]:
sum_r1_mat += Q[row, :, :]

inv = np.linalg.inv(sum_r1_mat + lam * np.identity(rank))
V[:, col] = inv @ B[:, col]

The update of U works analogously.

2.4.5 Practical Considerations
The academic perspective is often driven by clear objectives, e.g. quality guarantees of
algorithms or their runtime analysis. However, in real-world use cases many more factors
may be of relevance. We highlight here an important, but simple aspect of ALS, which is
that it can be used to incrementally extend a model. What we mean by this is the following.
Imagine a recommender system which makes use of ratings predicted by a factored model
A ≈ UV. Often, computing, verifying and deploying such a model involves considerable
effort and resources. On the other hand, there may constantly be new users entering the
system and new items becoming available. The real world does not stand still!

Q How can we incrementally update a model without having to go back to the
original data?
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The ALS perspective provides a very simple and efficient solution. Note that we can
compute an additional column vm+1 of V (or row un+1 of U) by solving a least squares
problem that only involves the parameter matrix U (or V) and the newly observed entries.
Similarly, we can also update such vectors, if additional matrix entries are observed. We
can do this cheaply, if we refrain from further alternating iterations, which offers a trade-off
between accuracy and computational complexity. We can (1) recompute without iterations,
(2) update a model taking an existing model as starting point, or (3) train a model from
scratch.

→ The separable model structure allows for efficient approximate incremental
updates per row or column that only requires local data.

2.5 Projection Algorithms
In gradient descent and ALS, we have parameterized our model as a product of two
matrix factors A ≈ UV, which allowed us to encode the rank constraint directly into the
parameterization, i.e. the inner dimension of U and V. While this is perhaps the most
natural approach, it is not the only possible avenue. Here we will discuss algorithms that
will operate in an unconstrained parameterization, yet enforce the rank constraint on the
reconstruction explicitly.

2.5.1 Singular Value Projection
The first algorithm exploits the fact that the projection of a matrix to the set of rank k
matrices can be done efficiently via SVD. Projected gradient descent can then be written
as follows

A0 = 0, At+1 =
[
At + ηΠΩ(A−At)

]
k
, η > 0 (2.39)

The notation [·]k extends the previous notation to denote the best rank k approximation to
the matrix in brackets. It corresponds to a projection to the set of rank k matrices and
can be computed via SVD. Clearly the expression in brackets is just the negative gradient
of the Frobenius norm of the residual on observed entries. This is a projected gradient
method that is known as singular value projection [21]. This method will converge with
a carefully chosen stepsize. A more detailed analysis is beyond the scope of our lecture.
Computationally, such an approach is attractive, if the SVD computations in the inner loop
are tractable, for instance if k is small.

→ In Singular Value Projection, SVD is used in combination with gradient descent
to perform a non-convex projection to the space of rank k matrices.

2.5.2 Nuclear Norm Relaxation
Another related idea is to use a convex relaxation of the rank constraint.

Q Can we find a convex set of matrices which contains all rank k matrices but
not too many more? What is the tightest relaxation?

The answer to this question is the nuclear norm (sometimes also called trace norm):
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Definition 2.5.1 The nuclear norm of a matrix A is the sum of its singular values,
‖A‖∗ =

∑rank(A)
i=1 σi.

It is elucidating to compare the nuclear norm and the Frobenius norm. Denote the vector
of singular values of A by σ(A), then:

Proposition 2.5.1

‖A‖F = ‖σ(A)‖2, ‖A‖∗ = ‖σ(A)‖1

Hence we see that the nuclear norm generalizes the idea to use the 1-norm to find
sparse solutions. Sparseness with regard to singular values is equivocal with low rank.

Definition 2.5.2 The convex envelope of a function f : R → R is the largest convex
function g for which g ≤ f on R.

We have the following result due to [13].

Theorem 2.5.2 The convex envelope of rank(A) on R = {A : ‖A‖2 ≤ 1} is ‖A‖∗.

This theorem provides the motivation for using the nuclear norm as a convex surrogate
function to replace the rank.

While conceptually compelling, what are computational implications of using the nuclear
norm? A foundational result involving the SVD is due to [5].

Proposition 2.5.3 Let A with SVD A = U diag(σi)V
> be given. Then

shrinkτ (A) := arg min
B

1

2
‖A−B‖2F + τ‖B‖∗ = U diag(σi − τ)+V> (2.40)

Procedurally we have abstracted the nuclear norm minimization into an operator, which
shrinks each singular value by τ , while clipping the result at zero. Note that this shows
how the nuclear norm induces sparseness: all singular values below τ will be zeroed out and
hence the rank of shrinkτ (A) will be monotonically decreasing with τ . What can we do
with this basic operator as a computational subroutine? One possible answer is provided
by the following proposition [5].

Proposition 2.5.4 With a suitable step size schedule ηt > 0, consider the iterate sequence:

A0 = 0, At+1 = At + ηtΠΩ(A− shrinkτ (At)) (2.41)

Then, the sequence shrinkτ (At) will converge to

shrinkτ (At)
t→∞−→ A∗ = arg min

B

{
‖B‖∗ +

1

2τ
‖B‖2F

}
, s.t. ΠΩ(A−B) = 0

Note that the nuclear norm is the convex envelope of the rank function, as long as we
can also control the Frobenius norm of possible solutions. This is why a choice of τ <∞
makes sense. The result will be exactly reproducing the observed entries, something that
we cannot guarantee for the non-relaxed problem (irrespective of algorithm) as there may
be no rank k matrix with a projected residual that is zero. The soft penalty on the hybrid
of nuclear norm and Frobenius norm allows for that however.

In comparison to Singular Value Projection the convex relaxation approach does not
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Figure 2.3: Schematic view of how to use random projections to compute matrix factoriza-
tions and decompositions. Taken from [18].

define a low rank sequence of matrices. Rather the SVD-based shrinkage operator is used
implicitly to compute and update direction. Note that the iterates have the same sparseness
structure as the data matrix A, which can be a significant saving.

→ The convex relaxation approach to matrix completion maintains a sparse iterate
sequence, whereas Singular Value projection maintains a rank k matrix. Both
are beneficial relative to a naïve (i.e. dense) representation.

2.5.3 Randomized Algorithm for SVD

As we have seen, the algorithms presented in this section rely heavily on repeated SVD
computations for projection or shrinkage. It should be clear that in practice one can tolerate
some degree of inaccuracy for intermediate iterates.

Q Are there simple and scalable algorithms for SVD?

We therefore conclude this part by presenting a general and powerful use of randomized
projections [18], which is also available in programming languages like R [12]. The basic
idea applies to many types of matrix decompositions and is diagrammatically shown in
Figure 2.3. Let us assume that (1) we can compute an orthogonal matrix Q with few(er)
columns such that A ≈ QQ>A. Then we can (2) perform SVD of the smaller matrix
B := Q>A = ŨΣ̃ΣΣṼ> and (3) extend it to an approximate SVD for A ≈ (QŨ)Σ̃ΣΣṼ>. Of
course, in computing the SVD of B, we can apply the same technique to its rows, thereby
reducing both columns and rows of A.

How can we find such a matrix Q? A prototypical scheme is as follows. (1) Generate
a random matrix with iid Gaussian entries R ∈ Rm×2k. (2) Calculate Y = (AA>)qAR
(e.g. for q = 2) by repeated matrix multiplications. (3) Construct an orthonormal basis for
the image of Y (e.g. via Gram-Schmidt). This algorithm can be re-fined in many ways and
was thoroughly analysed in the (excellent!) seminal paper [18].

→ The SVD can be efficiently computed via random projections, which also gives
control on the trade-off of accuracy vs. complexity.
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2.6 Exact Matrix Reconstruction
We have seen that the nuclear norm relaxation provides a systematic way to compute a low
rank approximation of a matrix, which however, may not be the best approximation (in
the Frobenius norm sense, say). Let us now consider the following question:

Q If the underlying matrix A is of rank k, are there conditions under which it
can it be recovered exactly (with high probability)?

2.6.1 Degrees of Freedom
It is clear that a certain number S of matrix entries need to be observed in order to be able
to even uniquely determine a rank k matrix. Counting these degrees of freedom provides
a simple information theoretic bound. In the sequel, we will focus on quadratic matrices
A ∈ Rn×n, which simplifies the analysis.

From the SVD of A, we can read of the degrees of freedom as follows. We can chose k
singular values. For the left and right singular vectors, the number of degrees of freedom is,

(n− 1) + (n− 2) + · · ·+ (n− k) = nk −
k∑
i=1

i = nk − k(k + 1)

2
. (2.42)

The reduction from nk is implied by the normalization and pairwise orthogonality constraints.
So in total we get a necessary condition

S ≥ k + 2

(
nk − k(k + 1)

2

)
= 2nk − k2 (2.43)

From this one can conclude:

→ A rank k square matrix of dimension n×n is not reconstructable, if the number
of observed matrix entries is S < 2nk − k2.

From this analysis it is clear that at least O(nk) entries of A need to be sampled.

2.6.2 Coupon Collector
Let us naïvely consider a coupon collector argument (which can also be made more formally).
If we need to collect N pieces of information through random sampling, we will often re-
sample information that is already available. So there is an extra price to be paid for
random selection. The simplest problem is known as the coupon collector’s problem.

Q If items contain one of n coupon each (at random), what is the probability
that more than t items need to be acquired to collect all n coupons? How
many items need to be acquired on average?

Let us quickly present the argument. Denote by ti the number of items that need to be
acquired in order to acquire a new i-th coupon, given that (i− 1) have been acquired. ti
follows a geometric distribution with expectation

E[ti] =
n

n− i+ 1
(2.44)
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Then the time to acquire all coupons is in expectation

E[T ] =
n∑
i=1

E[ti] = n

(
1 +

1

2
+

1

3
+ · · ·+ 1

n

)
= nHn (2.45)

where Hn is the n-th harmonic number, Hn = log n+ O(1).

→ In expectation, the coupon collector has to (asymptotically) over-sample items
by a factor of log n.

Informally applied to the matrix reconstruction problem, we have to expect an extra factor
O(log nk) = O(log n).

2.6.3 Incoherence
For matrix reconstruction to work, one requires some additional regularity condition on the
matrix, which in compressed sensing is often called a measure of incoherence. The need for
this can be easily illustrated by a simple (counter) example. Assume that in the SVD of A,
u1 = ei, v1 = ej , then in order to recover the singular value σ1, one needs to sample aij as
the other entries of A contain no information about aij (cf. motivating discussion).

→ Low-rank matrix reconstruction from sparse samples is not possible without
further regularity conditions.

Intuitively, one needs information to be sufficiently distributed. In the above case one
can follow the approach of [6] and define first the projection matrices to the column and
row space of a rank k matrix with SVD A = UΣΣΣV>

P :=
k∑
i=1

uiu
>
i , Q :=

k∑
i=1

viv
>
i , as well as E =

k∑
i=1

uiv
>
i (2.46)

Then [6] require incoherence conditions of the type

|pij |, |qij |
i 6=j
≤ µ
√
k

n
,

∣∣∣∣pii − k

n

∣∣∣∣ , ∣∣∣∣qii − k

n

∣∣∣∣ ≤ µ
√
k

n
, |eij | ≤

µ
√
k

n
. (2.47)

It is a bit beyond the scope of these lectures to explain these conditions. The interested
reader can consult [6] and the literature on incoherence in compressed sensing.

2.6.4 Reconstruction Theorem
We will now state and discuss a beautiful and far-reaching result on matrix reconstruction as
developed in [6]. We state the quadratic case, the rectangular one is similar.

Theorem 2.6.1 Let A ∈ Rn×n be a rank k matrix that is incoherent with some µ ≥ 1 and
for which S samples have been observed at random. Then there is a universal constant
C such that if S ≥ Cµ2nk(log n)6, then with probability at least 1− n−3, A fulfills

A = arg min
B

‖B‖∗, subject to ΠΩ(B) = ΠΩ(A)
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This states that there is a critical number of observations after which the solution to the
nuclear norm relaxation will recover the correct matrix with high probability. Note that up
to poly-logarithmic factors, the critical value scales with kn and in some sense is close to
the information-theoretic limit. This says essentially:

→ If the matrix is recoverable from its sampled entries, then it can “essentially”
be recovered via nuclear norm minimization.



3. Latent Variable Models

3.1 Probabilistic Clustering Models
3.1.1 Mixture Models

Assume we are given a data set of patterns {xt : t = 1, . . . , s}. The conceptually simplest
family of latent variable models associates a categorical (random) variable Zt with each
pattern. The latent information tags a pattern as a member of a group or class. For this
reason, we can think of such latent class models in terms of probabilistic clustering models.
In statistics, they are known as mixture models.

→ Mixture models are probabilistic clustering models that associate a categorical
variable with each pattern.

Let us make this more formal. Under a common iid assumption, each latent class variable
will follow a categorical law

Zt
iid∼ Categ(π1, . . . , πk), P(Zt = z) = πz (3.1)

Here πππ = (π1, . . . , πk) is an unknown parameter vector that encodes the prior probabilities
or proportions for each class. Note that we typically do not know beforehand what these
classes mean, but we often hope to discover meaningful classes via clustering.

Following the latent variable philosophy, one will specify a class conditional distribution
p(x|z) for each class. We can then formally obtain a model for the observables by summing
out the latent variables (i.e. by marginalization)

p(x, z) = πz p(x|z), p(x) =
k∑
z=1

p(x, z) =
k∑
z=1

πz p(x|z) (3.2)

Note that as πππ ≥ 0,
∑
πz = 1, we have that:
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→ Mixture distributions are convex combinations of class-specific distributions.

Typically, the class conditional distributions will be independently parameterized with
parameters θθθz. Learning a mixture model involves fitting these parameters along with the
mixture proportions, in total we have a model parameter vector θθθ = (πππ,θθθ1, . . . , θθθk). For
given parameters θθθ we can use Bayes’ rule to calculate the posteriors

P(Z = z|x;θθθ) =
πz p(x;θθθz)∑k
ζ=1 πζ p(x;θθθζ)

(3.3)

We can interpret these posteriors as soft clustering weights or – more precisely – probabilistic
cluster memberships.

→ Posterior latent class probabilities represent a probabilistic clustering.

3.1.2 Maximum Likelihood Estimation
How can we infer or learn the model parameters θθθ from data? Foremost we need an inference
principle.

Q What is a suitable inference principle for latent class models?

A very popular approach with strong theoretical foundations is the maximum likelihood
principle. It uses a likelihood function as an objective. What is a likelihood function?
It is the probability distribution (e.g. probability density or mass function) thought of
as a function of the parameters, while fixing the observed outcomes (i.e. the data). It is
convenient to work on the logarithmic scale and define the log-likelihood. In the iid setting
one gets:

`(θθθ; {x1, . . . ,xs}) =

s∑
t=1

ln p(xt;θθθ) =
s∑
t=1

ln
k∑
z=1

πz p(xt;θθθz) (3.4)

We are then left with an optimization problem to find the maximum likelihood estimate
(MLE)

θθθMLE = arg max
θθθ

`(θθθ; {x1, . . . ,xs}) (3.5)

→ Maximum likelihood inference suggests to chose the model parameters which
maximize the probability of the observed data.

This leads to the natural follow-up question:

Q How can we compute the MLE of a mixture model?

One classical and widely-applicable approach is the well-known Expectation-Maximization
(or short: EM) algorithm.
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3.1.3 Expectation Maximization Algorithm
The EM algorithm is a versatile tool for learning in latent variable models. We discuss it
here in the context of mixture model, but will re-visit extensions below. The basic step in
EM is to apply Jensen’s inequality to lower bound a concave function or – equivalently –
upper bound a convex function. Formally let φ be a concave function and X be a random
variable, then

φ(E[X]) ≥ E[φ(X)] (Jensen’s inequality)

In plain English: averaging first and then applying a concave function to the average cannot
yield a value that is smaller than the average of the function values. It is interesting to
note that Jensen’s inequality applies irrespective of the law that governs X – it just relies
on the concavity property of φ.

There is a simple (and frequently applied) trick of how to make use of Jensen’s inequality.
Let us develop this trick in the abstract and consider g = ln

∑k
z=1 fz, and define a k-atom

random variable as follows

P(X = x) =
k∑
z=1

qzI
[
x =

fz
qz

]
(3.6)

Here the positive weights qz are chosen arbitrarily, but such that
∑
qz = 1. Note that the

probabilities enter in the atomic values that X takes. This may look strange at first, but
leads to the following:

g = ln
∑
z

fz = ln
∑
z

qzfz
qz

= ln E[X] (3.7)

≥ E[lnX] =
∑
z

qz ln
fz
qz

=
∑
z

qz ln fz +H(q)

where H denotes the entropy. As we can see, we have converted a logarithm of a sum
of terms into a q-expectation of the logarithmic terms. This is known as a variational
inequality as we have not just a single inequality, but a parameterized family of lower
bounds.

→ Jensen’s inequality can be used to define a variational inequality which swaps
logarithm and summation.

This is relevant for mixture models as the per pattern log-likelihood is exactly of this form.
Note that we get a separate variational inequality per data point, so we can chose a vector
of convex weights qt for each pattern xt to get the so-called evidence lower bound (ELBO)

`(θθθ) =
s∑
t=1

ln
k∑
z=1

πz p(x;θθθz) ≥
s∑
t=1

k∑
z=1

qtz [lnπz + ln p(xt;θθθz)− ln qtz] (ELBO)

We can now use the ELBO as an objective to be maximized: Maximizing with regard to
the variational parameters will increase the tightness of the bound, whereas maximizing
the ELBO with regard to the model parameters will improve the model fit.

→ The Evidence Lower BOund (ELBO) yields approximate, often tractable,
objective functions for learning in latent variable models.
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Let us solve for the optimal choice of the variational parameters. Note that the ELBO is
separable with regard to the these parameters, i.e. we can solve every qt independently.
This means, we can drop the t-index and optimize the generic problem with pz = p(x;θθθz):

q
max→

k∑
z=1

qz [ln pz + lnπz − ln qz]− λ

(∑
z

qz − 1

)
(3.8)

where we have introduced a Lagrange multiplier λ to enforce the normalization constraint
on q. The resulting first order optimality condition is

ln pz + lnπz − ln qz
!

= λ+ 1 ⇐⇒ qz
!

= e−(λ+1) πz pz ⇐⇒ qz
!

=
πz pz∑
ζ πζ pζ

. (3.9)

The second equation is obtained through exponentiation and the third equation follows from
the choice of the proportionality constant such that

∑
z qz = 1. The solution has a very

intuitive interpretation: it is the posterior of the latent class variable and the determining
equation an instantiation of Bayes’ rule. Note that the optimal choice of the variational
parameters depends on the model parameters θθθ. It is only a partial solution step, called
the Expectation (or E) step within an alternating maximization scheme.

→ The optimal choice of the variational distribution is the posterior of the latent
variable (for fixed model parameters).

What can (structurally) be said about the maximization with regard to the model parameters
θθθ? We can generally solve for πππ to get (after introducing a Lagrange multiplier and some
algebra)

πz =
1

s

s∑
t=1

qtz (3.10)

The solution for θθθz depends on the choice of model distribution, but we can generically get
to separable problems

θθθz
max→

s∑
t=1

qtz ln p(xt;θθθz) (3.11)

This means that parameters for different components z are decoupled given q. For each
component we have to simply solve a weighted MLE problem. It is often possible to
analytically solve this problem, in which case we call this step a maximization (or M) step.1

→ The optimal choice of model parameters with regard to the ELBO reduces to
finding weighted MLEs for each component.

We have derived the general framework of EM for mixture models. This can be generalized
to other types of variables and models, which we will discuss subsequently. To conclude
this section, we will consider a special case known as a Gaussian mixture model. Due to
its importance, we include here an intermezzo on the normal distribution, which can be
skipped without harm by the knowledgeable reader.

1More generally, one may have to resort to local improvements, which is called an incomplete M-step.
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3.1.4 Normality
We provide here a basic introduction to the normal distribution as normal (aka Gaussian)
random variables are pervasive in machine learning.

Binomial Distribution
What is the simplest source of randomness? It is a coin flip, a random bit. Let us perform a
sequence of independent coin flips X1, X2, . . . , with outcomes x1, x2, · · · ∈ {0, 1} encoding
‘tail’ vs. ‘head’. Let us now consider the partial sums,

Sn =

n∑
i=1

Xi, 0 ≤ Sn ≤ n (3.12)

which is itself a sequence of random variables. What is the distribution of Sn? Or
equivalently: what is the probability to get k heads in a trial of length n? The answer is
elementary: it is the binomial distribution

P{Sn = k} =

(
n

k

)
pkqn−k, q := 1− p . (3.13)

Here p = P{Xi = 1} ∈ [0; 1] is the success probability, e.g. p = q = 1
2 for an unbiased coin.

Let us shift and scale the partial sums, so they have zero mean and unit variance. It is
easy to verify that

E[Sn] = np, E[(Sn − np)2] = npq, s.t. Zn =
Sn − np√

npq
. (3.14)

The variable sequence Zn is centered and standardized. As is well-known for large enough
n and large enough pq (p not being too close to the extremes) the binomial distribution
(with its unwieldy factorials) can be numerically approximated by a normal distribution
with zero mean and unit variance. In general:

X ∼ N (µ, σ2), with density p(x) =
1

σ
√

2π
exp

[
−1

2

(
x− µ
σ

)2
]
. (3.15)

This can often be illustrated by plotting the binomial law together with the Gaussian bell
shape of the normal density (cf. Figure 3.1).

Central Limit Theorem
However, the above observation is more than just a convenient computational trick for a
special case of distributions. The deeper reason is the central limit theorem (CLT), which
holds for all standardized partial sums of iid random variables. This is a strong universality
property.

Zn
d→ N (0, 1),

d→ ≡ converges in distribution to (3.16)

In the one-dimensional case, we can think of this as pointwise convergence of the cumulative
distribution functions (at continuity points).

→ The standardized partial sums of a sequence of iid random variables converges
in distribution to a normal distribution (Central Limit Theorem).
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Figure 3.1: Gaussian approximation to the binomial.

Figure 3.2: Fitting an ellipse to a set of points with least squares. Cf. https://en.
wikipedia.org/wiki/Least_squares

The normal distribution is special! Intuitively speaking, whenever we are ‘washing out’
the randomness by averaging, the shape of the distribution of the elementary random
events becomes irrelevant. The CLT also holds in many cases where distributions are not
necessarily identical but fulfill certain conditions (e.g. the Lindeberg condition). Another
very important generalization of the CLT is to martingales. These are sequences (processes)
where Zn+1 may depend on Z1, . . . , Zn, but it is required that E[Zn+1−Zn|Z1, . . . , Zn) = 0.

R This CLT can be extended to non-iid data, for instance by considering martingales.
This can be useful in a lot of asymptotic analyses as establishing the martingale
property may be relatively straightforward.

Least Squares
A second feature of the normal distribution is its connection to least squares. The following
regression technique goes back to Gauss: assume that (i) we have a curve fθ parameterized
by θ (e.g. a line or quadratic) and (ii) a set of points {xi}, then a least squares fit is given

https://en.wikipedia.org/wiki/Least_squares
https://en.wikipedia.org/wiki/Least_squares
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Figure 3.3: A 10 Deutsche Mark bill showing Gauss and the normal density (Gaussian bell
curve).

by

θ
min−→ 1

2n

n∑
i=1

min
x∈fθ

(x− xi)
2 . (3.17)

An example is shown in Figure 3.2. In the special case, where fθ is a function and x = (x, y)

θ
min−→ 1

2n

n∑
i=1

(fθ(xi)− yi)2 (3.18)

What does this have to do with the normal distribution? Note that if we assume that data
points are corrupted by normal (or Gaussian – sic!) noise, then the least squares solution is
the one that maximizes the probability (probability density function value) of the observed
data. Hence the use of the squared error metric and assumptions about the normality of
noise go hand in hand. What used to go from hand to hand is the bill shown in Figure 3.3.
Gaussian densities used to be common knowledge and a bank note could serve as a cheat
sheet :)

→ Normal (noise) distributions are often implicit in the use of least squares criteria
for estimation.

Multivariate Normal

In probabilistic modeling, the multivariate Gaussian is omnipresent.

Q How we can derive a multivariate version of the normal distribution?
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Let us show how we can lift from one to m dimensions. The idea is to consider a vector of
iid Gaussian random variables xj ∼ N (µj , σ

2
j ) and to calculate

p(x; {µj , σ2
j }) =

n∏
j=1

p(xj ;µj , σ
2
j ) =

n∏
j=1

1

σj
√

2π
exp

[
−1

2

(
xj − µj
σj

)2
]

(3.19)

=
exp

[
−1

2(x−µµµ)>ΣΣΣ−1(x−µµµ)
]

(2π)
m
2 det(ΣΣΣ)

1
2

, ΣΣΣ = diag(σ2
1, σ

2
2, . . . , σ

2
n) (3.20)

This shows how to switch to a vector/matrix view by lifting the product into the exponent.
The formula derived generalizes to choices of ΣΣΣ, aka the variance-covariance matrix, as any
positive semi-definite matrix. The entries of ΣΣΣ have a very precise interpretation

σij = E[xixj ], σij = 0 ⇐⇒ xi and xj are (marginally) independent and (3.21)

(ΣΣΣ−1)ij = 0 ⇐⇒ xi and xj are conditionally independent on {xk : k 6= i, j}

The inverse of ΣΣΣ is also called the precision matrix. The contour lines of the density function
are hyper-ellipsoids. In the diagonal (and general) case they are given as the solution to
the quadratic equation (after centering x← x−µµµ)

∑
j

(
xj
σj

)2

= const more generally (Ux)>(Ux) = const, ΣΣΣ−1 = U>U . (3.22)

3.1.5 Gaussian Mixture Model
Let us specialize the mixture model to the Gaussian case. One typically uses Gaussian
component models of fixed (for simplicity unit) variance, leading to

p(x;πππ, {µµµ1, . . . ,µµµk}) =

k∑
z=1

πzp(x;µµµz), p(x;µµµz) = (2π)−
d
2 exp

[
−1

2
‖x−µµµz‖2

]
.

(3.23)

A picture showing a simple k = 5 mixture with generated samples is shown in Figure 3.4.
The EM algorithm then consists of the following alternating equations

P(Zt = z|xt, θθθ) =
πz exp

[
−1

2‖xt −µµµz‖
2
]∑

ζ πζ exp
[
−1

2‖xt −µµµζ‖2
] =: qtz (E-step)

µµµz =

∑s
t=1 qtzxt∑s
t=1 qtz

, πz =
1

s

s∑
t=1

qtz (M-step)

As said above, we can interpret the E-step posteriors as soft clustering weights. The
Gaussian means are re-calculated in the M-step as the weighted centroids of the associated
data points. It can be seen that the EM algorithm for Gaussian mixtures is closely related
to the k-means algorithm, which is recovered in the limits of σ →∞.

→ The EM algorithm for the Gaussian mixture model alternates between updating
probabilistic cluster membership and re-computing cluster centers with a
weighted centroid condition.
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Figure 3.4: Example of a Gaussian k = 5 mixture.

3.2 Topic Models
We now turn to a related, but different class of latent variable models known as topic models.
They take their name from the paradigmatic use case in which they have been developed:
to analyse document collections and to discover the topical content of a document, its
aboutness.

→ Topical content is the information words carry on “what a text is about”. It is
assumed to be invariant with respect to word order.

As such, topic models aim to explicitly discover linguistic semantics, however, they have
also been used to discover, for instance, interest patterns in collaborative filtering. We
pursue a step-by-step approach here driven by the question:

Q How can we formalize topical semantics as a statistical model?

The educational point of this exercise is to make visible the interaction between intuitions
about the problem (what are topics? ), its mathematical formalization (what are topic
models? ), and its statistical or computational realization (how can we learn topic models? ).

3.2.1 Order Invariance and Exchangeability
We will treat a document collection as a field of random variables Xit with realizations
xit ∈ Σ, where Σ, |Σ| = m is the word vocabulary, i = 1, . . . , n enumerates documents and
t = 1, . . . si word positions in the i-th document. So in the example below, say a document
contains si = 13 words, then we think of each slot as a random variable and the observed
word from the vocabulary Σ as its realization.

When︸ ︷︷ ︸
Xi1

the︸︷︷︸
Xi2

blackberries︸ ︷︷ ︸
Xi3

hang︸ ︷︷ ︸
Xi4

swollen︸ ︷︷ ︸
Xi5

in︸︷︷︸
Xi6

the︸︷︷︸
Xi7

woods︸ ︷︷ ︸
Xi8

in︸︷︷︸
Xi9

the︸︷︷︸
Xi10

brambles︸ ︷︷ ︸
Xi11

nobody︸ ︷︷ ︸
Xi12

owns︸ ︷︷ ︸
Xi13

The first thing to consider is:
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Q Should word order matter in topic models?

It is a defining feature of topic models – as opposed to other semantic models – to ignore
word order and to focus only on the usage of words at a document or paragraph level. We
thus assume: the aboutness of a document is described by the words it uses, irrespective
of its propositional content. This assumption is debatable in its radicality, but leads
to important modeling simplification. Mathematically speaking, such an invariance to
observation order is known as exchangeability, which says that the distribution of a sequence
of random variables X1, X2, . . . , Xs does not change under any permutation of their order.

→ Topic models ignore word order and make an exchangeability assumption.

Are there relevant consequences of this assumption? It is clear that any inference
about the distribution – something we want to learn or estimate – should not depend on
non-invariant aspects of the data. So let us first identify those statistics, i.e. functions of
the data, that are invariant, the so-called sufficient statistics.

Q What are the sufficient statistics of topic models?

It is intuitively clear that these statistics are the frequencies of occurrence of words in
documents. Retaining more than just the number of occurrences will have to refer to
positional or order information and retaining less, e.g. only which terms occurred and which
ones not, will possibly lead to a loss of statistical efficiency. We can hence reduce the data
from the start to what is known as a bag-of-words representation of occurrence counts,
formally

Nij = |{xit = wj | t = 1, . . . , si}| . (3.24)

So Nij denotes how often word wj occurred in document di.

→ We can summarize a document corpus in an occurrence matrix of counts

N = (Nij) ∈ Zn×m≥0 . (occurrence matrix)

We have also depicted this reduction pictorially in Figure 3.5.
There is another, deeper consequence of exchangability, which is known as de Finetti’s

theorem, which will come back to later. This theorem shows that the constraints imposed
on dependencies by the exchangablity property leads to a particular representation as
continuous mixtures

p(X1, . . . , Xs) =

∫ s∏
r=1

p(xr;θθθ) dP (θθθ) (3.25)

This means that exchangeable distributions always have a representation involving a latent
parameter θθθ, conditioned on which observations are rendered independent. While this may
seem mysterious here, we will re-visit this in the context of the Latent Dirichlet Allocation
model.
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Figure 3.5: Occurrence matrix, also known as term-document matrix in information retrieval.

3.2.2 Probabilistic Latent Semantics Model

Q What are topics? What is the complete data model?

We have to conceptualize how the topical content should be represented formally. What
do we mean by a topic? In the simplest case, we can say that different topics are discrete
units such as “yoga”, “travel”, or “photography”, things that people are interested in to talk
or write about.

→ Topics are nominal categories of aboutness.

So formally, we can think of topics as being modeled by a variable z ∈ {1, . . . , k}, similarly
to the case of mixture models.

R This of course assumes that the number of topics is finite and known, that there is
no structure – say hierarchical, etc. In a practical context, one may want to consider
revisiting some of these issues. Note that we want to attach topical content to each
word occurrence and not each word per se.

We now need to decide on:

Q What to attach topic variables to?

If we were to attach it to an entire document, we would effectively perform document
clustering. A somewhat more interesting model, the one followed in topic models, is to
introduce a topic variable for each word occurrence. Let us reflect on that: this means
that the usage of a word in the context of a document makes reference to a topic. This
allows for the fact that the same word can refer to different topics in different contexts.
This is a feature as word can be ambiguous (homography, polysemy, references). Examples:
“bear" (animal vs. verb), “wood" (material vs. area), “Michael Jordan" (basketball player
vs. machine learning researcher). It also means that the topics of documents will be induced
by the topics of the words they contain. This should also be considered a feature as topics
need not to be mutually exclusive, but can be combined. For instance, a document on
soccer world cup 2022 in Dubai may contain soccer vocabulary (e.g. “teams”, “play”, “soccer”,
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“match”), but also political vocabulary (e.g. “labor”, “corruption”, “president"), or medical
terms (e.g. “pandemic”, “Covid”)

→ Topic variables are associated with each word occurrence.

So formally the complete data will be a sequence of word-topic pairs for each document:

(Xit, Zit), Xit ∈ Σ, Zit ∈ {1, . . . , k} (3.26)

The next question is how to define a model? In the spirit of latent variable models, this
involves to parts: (1) Define a distribution over the latent (i.e. topic) variables. (2) Define a
conditional distribution of a word given a topic. Let us consider the latter first. A saturated
model would be one that simply enumerates the probability of each word under each topic.
This seems plausible as topics would then be characterized by the words that are “about"
them.

→ Topics are represented as distributions over words, i.e. conditionals p(w|z).

This leaves the question of how to define the distribution over the latent variables. It is
clear, we cannot condition on the word occurrence as this is generated downstream. The
only information one can condition on is hence the document identity.

→ Each document is characterized by a distribution over topics p(z|d)

Putting these pieces together, we can formulate the topic model as a two stage sampling
process, where for each occurrence, we (1) sample a topic from p(z|d), and (2) sample a
token, given the sampled topic p(w|z). This is shown in Figure 3.6. we can also write this

Figure 3.6: Probabilistic Latent Semantic Analysis: two-stage sampling

basic topic model, also called probabilistic Latent Semantic Analysis (pLSA), in a formula
as a probabilistic model over occurrence matrices. We get the log-likelihood

`(θθθ; N) = ln p(N;θθθ) =
∑
i,j

Nij log p(wj |di), p(wj |di) =
k∑
z=1

p(wj |z)p(z|di) (3.27)
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“segment 1” “segment 2” “matrix 1” “matrix 2” “line 1” “line 2” “power 1” “power 2”
imag speaker robust manufactur constraint alpha POWER load

SEGMENT speech MATRIX cell LINE redshift spectrum memori
texture recogni eigenvalu part match LINE omega vlsi
color signal uncertainti MATRIX locat galaxi mpc POWER
tissue train plane cellular imag quasar hsup systolic
brain hmm linear famili geometr absorp larg input
slice source condition design impos high redshift complex

cluster speakerind. perturb machinepart segment ssup galaxi arrai
mri SEGMENT root format fundament densiti standard present

volume sound suffici group recogn veloc model implement

Table 3.1: Eight selected topics from a 128 topic decomposition. The displayed word stems
are the 10 most probable words in the class-conditional distribution p(word|topic), from top
to bottom in descending order.

3.2.3 Expectation Maximization Algorithm

We will now derive the EM algorithm for the topic model introduced above. Note first that
we can equivalently write the log-likelihood based on the raw data

`(θθθ) =
n∑
i=1

si∑
t=1

ln p(xit;θθθ), p(xit;θθθ) =
k∑
z=1

p(xit|z)p(z|di) (3.28)

We can now apply the standard variational bound to each of the log-probabilities. This
results in the ELBO

`(θθθ) ≥
n∑
i=1

si∑
t=1

k∑
z=1

qitz [ln p(xit|z) + ln p(z|di)− ln qitz] =: ˆ̀(θθθ; q) (3.29)

The structure of the ELBO is very similar to case of mixture models. Following essentially
the same steps, but taking the specific normalization constraints into account, we can derive
the EM equations

qitz =
p(xit|z)p(z|di)∑
ζ p(xit|ζ)p(ζ|di)

(E-step)

p(wj |z) =

∑
i,t I[xit = wj ] qitz∑

i,t qitz
, p(z|di) =

1

si

si∑
t=1

qitz (M-step)

→ The EM equations for the topic model can be derived in close analogy to
mixture models.

Interpreting these equations, we see that the E-step gives posterior probabilities, where
p(z|di) acts as a prior. This yields a probabilistic clustering of word occurrences (sic! not
of words or documents). The M-step equations are natural as they are just MLEs for a
q-weighted multinomial sample. Note that all updates are sparse, scaling with the total
number of word occurrences s =

∑
i si. The EM algorithm will converge, but there is no

guarantee that the solution will be a global maximizer of the log-likelihood.
Finally, we provide some anecdotal evidence that the topic model is identifying interesting

regularities in document collections in Table 3.2.3. This is based on a small corpus of
research articles, words have been stemmed.
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3.2.4 Latent Dirichlet Allocation
The topic model presented above assumes that a fixed set of documents is given and then
selects the parameters so as to maximize the predictability of words within a document,
which is what the likelihood criterion effectively represents. One may wonder:

Q How can the topic model be extended in a way that accounts for modeling
new, unseen documents?

An answer to this question is given by the so-called Latent Dirichlet Allocation (LDA)
model [3]. Let us introduce a proper parameter notation for the conditional distributions
in the topic model

ujz := p(wj |z), vzi := p(z|di) (3.30)

The main idea is to define a distribution over per-document topic mixture vectors v ∈ [0; 1]k,∑
z vz = 1. What distribution is appropriate? There are many choices, but one way to get

to a unique answer is via the principle of conjugacy. In Bayesian inference a conjugate prior
is one that is compatible with the likelihood in a way that it leads to a posterior belonging
to the same family. This is also known as the reproducing property. The conjugate choice
to the categorical topic variable turns out to be a Dirichlet distribution, which has density
proportional to

p(v|ααα) ∝
k∏
z=1

vαz−1
z , αz > 0 (3.31)

In the simplest case, we will assume that the hyperparameters are chosen αz = α, where α
can be optimized on a held-out data set.

→ The Dirichlet distribution is a prior distribution over topic mixture weights
that can be motivated from the principle of conjugacy.

We now need to augment the topic model with a Dirichlet prior to arrive at the model known
as Latent Dirichlet allocation (LDA). The basic idea is to integrate over the document-
specific parameters – or technically speaking, to treat them as nuisance parameters – and
to only retain the topic distributions over words, i.e. the parameter matrix U. Executing
this plan, we get a model for a fixed length2 document

P(X = (x1, ..., xs); U) =

∫ s∏
t=1

p(xt|U,v) p(v|ααα)dv, p(wj |U,v) =

k∑
z=1

ujzvz (3.32)

Here we see that we retain the same word prediction model, but instead of providing
an MLE point estimate, we perform Bayesian averaging to get the Bayesian predictive
distribution.

→ The Latent Dirichlet Allocation model uses a Bayesian predictive distribution
to model topics.

2One can further extend the model by making s a random variable.
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Figure 3.7: Intuition behond LDA, Figure taken from [2].

Figure 3.8: Topics inferred by LDa. Figure taken from [2].

LDA offers a somewhat more robust and preferred topic model. It is somewhat more
involved to develop scalable learning algorithms for LDA, but there are nowadays many
highly scalable implementations available that rely on Markov Chain Monte Carlo (collapsed
Gibbs sampling) or variational EM. Finally, we reproduce a exemplary results from [2] in
Figure 3.7 and 3.8.

3.2.5 Probabilistic Matrix Decomposition

Q How does the probabilistic latent semantics model relate to matrix decomposi-
tion?

When formulating a model one is often guided and motivated by particular use case (as
above for topic models). However, it is important – and in itself not always obvious how –
to relate a model to other, simpler or pre-existing models. In the case of the topic model
above, it seems that the topic variable plays the role of a dimension (or rank) bottleneck.
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Can we make this connection more precise? The connection becomes more obvious, in the
explicit parameterization:

ujz := p(wj |z), vzi := p(z|di) . (3.33)

We can then form N̂ = UV, which is a rank k (or less) matrix. This matrix is not a matrix
of counts, but we can think of it as an approximation of relative word frequencies, more
precisely Nij ≈ siN̂ij .

→ The probabilistic latent semantics model constructs a low rank approximation
to the observed count matrix.

If we take the probabilistic semantics into account, we have to consider additional constraints
in the parameter space. First of all, parameters are non-negative

ujz ≥ 0 (∀j, z), vzi ≥ 0 (∀i, z) (3.34)

A factorization of a matrix into non-negative factors is known as non-negative matrix
factorization (NMF). Note that the objective directly follows from the latent variable
modeling approach and is not imposed in an ad hoc manner. In the matrix view we can
re-write the log-likelihood objective as

`(U,V; N) =
∑
i,j

Nij ln N̂ij , N̂ = UV (3.35)

In addition to the non-negativity constraints, there are also further normalization constraints
on the row/column level, namely∑

j

p(wj |z) =
∑
j

ujz = 1, (∀z)
∑
z

p(z|di) =
∑
z

vzi = 1, (∀i) . (3.36)

Again, these additional constraints may appear somewhat arbitrary in the context of (non-
negative) matrix factorization, but are a direct consequence of the underlying statistical
model and its probabilistic interpretation.

→ The topic model can be thought of as a special case of a non-negative matrix
decomposition, but with a principled log-likelihood objective.

3.2.6 Non-Negative Matrix Factorization
Let us finally consider non-negative matrix factorization in its own right and independent of
topic models and their motivation. In many cases we observe matrices that are non-negative,
for instance count matrices like above or just real-valued matrices with non-negative entries,
e.g. measurements like intensities that by definition cannot be negative. We would then
like to make sure the approximation or reconstruction of a matrix is guaranteed to be
non-negative. Constraining the matrix factors to be non-negative is one avenue to build
this directly into the model.

Let us consider the problem of approximating a matrix A with positive factors, using
the squared objective as a criterion

`(U,V) =
1

2
‖A−UV‖2F , U,V ≥ 0 , (3.37)

where for simplicity we focus on the fully observed case. We ask:



3.2 Topic Models 61

Q How is a non-negative matrix decomposition different from an unconstrained
one?

The non-negativity constraints may superficially look relatively minor, however, they
completely change the nature of the matrix decomposition as they prevent cancellations
of entries in sums. If we think of images, then each factor produces (loosely speaking)
“ink" for an image, which cannot be erased by other factors. The superposition of factors
adds up with the same (positive) sign. This means that the inferred decompositions are
typically part-based in nature [30]. To illustrate this point, we show factors learned by
NMF, clustering (vector quantization) and PCA in Figure 3.9. It is clear that clustering
produces prototypical faces in their entirety, while NMF produces factors that correspond to
different parts of the face, which then get combined in a relatively sparse manner. The PCA
decomposition makes use of cancellation effects (red color). A higher resolution example is
shown in Figure 3.10. This is a very educating example to see how small adjustments in
the problem formulation can have very significant effects on the solutions that are found.

→ Non-negative matrix factorization often identifies factors that are qualitatively
different from PCA in that they tend to identify part-based representations.

Figure 3.9: Factors identified by NMF, VQ, and PCA. Taken from [30].

Let us finally quickly touch on computational aspects. One algorithmic option is to
use the Alternating Least Squares algorithm. It basically only needs to be augmented by
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Figure 3.10: Larger resolution of how to approximate a face by an NMF factorization.

projection steps that enforce non-negativity. This can be done through clipping.

ujz = max{0, ujz}, vzi = max{0, vzi} (3.38)

For a more detailed discussion of algorithms for NMF see [1].

3.3 Embeddings
3.3.1 Motivation

One of the fundamental problems in learning with symbolic or discrete data is to map atoms
(i.e. discrete units) to vector space representation also known as embeddings. As a running
example we will refer to the problem of lexical semantics, namely how to learn semantic
representation for words (or multi-word phrases). This is an interesting problem as: (1)
The link between the word (as a sequence of phonems or graphems) and its meaning is
conventional. As such it has to be learned either from a dictionary definition/gloss and/or
from the usage of words in language. The latter has been a topic in the philosophy of
language, for instance in the writings of Ludwig Wittgenstein, who states that “in most
cases, the meaning of a word is its use”. This open up interesting avenues for machine
learning. (2) The meaning of a word is not explicitly represented in language. Meaning is
not tied to a word in a one-to-one fashion, not even in a many-to-one or many-to-many
manner, but it depends on the linguistic context and even on non-linguistic aspects of the
situation in which language is used as a means of communication. This leaves open the
question of how to even represent meaning.

3.3.2 Word2Vec
Let us first consider the problem of learning semantic word representations in a context-
independent manner. We would like to learn a mapping from words to vectors

Σ 3 w︸ ︷︷ ︸
word

7→ zw ∈ Rm︸ ︷︷ ︸
vector

(3.39)

where m is some chosen dimensionality, typically in the range of m = 100− 500 in practice.

Q How can we learn a mapping from words to vectors such that vectors represent
word semantics?
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Figure 3.11: Illustration of the skip-gram model

The first problem with this question – similar to what we have seen for topic models – is
to formally define what is meant by “semantics". There is no generally accepted semantic
formalism, which a machine would simply have to re-discover. One possible solution is to
make use of the latent variable approach and to think of the latent representation of being
predictive of what is observed. We will see that we can use a very un-informative prior
on the latent representations (in fact ignore the prior altogether), but we need to answer
the crucial question of what it is that we want to predict. How can we quantify, whether a
representation is capturing semantics? One idea is to follow the verdict of Firth: “You shall
know a word by the company it keeps". Here we will interpret “company” as the context
of a word, in the simplest form the other words that co-occur with the word in question
within a fixed-size window.

→ Treat the embedding of each word as a latent variable that predict co-occurring
context words.

We illustrate this in Figure 3.11. We aim to learn a probabilistic model – also known
as distributional semantics – of co-occurring words. This model is also called the skip-
gram model.3 Let us formally write down the likelihood function for a sequence of words
x = x1, . . . , xT , making an iid. assumption and encoding the window in a set of positional
displacements I:

`(θ; x) =

T∑
t=1

∑
4∈I

log p(xt+4 |xt;θθθ) (3.40)

We will also assume suitable padding and identify xt with a special token for t < 1 and
t > T . Note that – for conreteness – a symmetric window of size 2R corresponds to the
choice I = {−R, . . . ,−1, 1, . . . R}.

Q How should we relate the prediction of skip-grams to latent word embeddings?

We now come to the key aspect of the word2vec model. We want to express p(v|w) for word
pairs v, w for which we have embedding vectors zv and zw. What is the simplest scalar
function that we can compute from two vectors? Arguably it is the inner product 〈zw, zv〉.
Note that the latter is a bi-linear function to the reals. Generally we prefer probabilistic
models to be linear on the log-scale and hence it is natural to presuppose

ln p(v |w) = 〈zw, zv〉+ const. =⇒ p(v |w) =
exp[〈zw, zv〉]∑
u exp[〈zw, zu〉]

(3.41)

3This is in reference to n-gram models that capture statistics of n consecutively occurring words. Here
we are dealing with pairs that can be separated by ’skipped-over’ words.
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→ We consider a (log-)bi-linear model of the word embeddings.

One often introduces a parameterization that explicitly includes biases bv ∈ R. This allows
to more explicitly control the marginal probability of the generated word. Moreover, nothing
speaks against increasing the modeling power by using different embedding vectors for
the conditioned word vs. the predicted word. While this is not strictly necessary in a
minimalistic view, it has practical benefits. We thus arrive at the model

p(v |w;θθθ) =
exp[ζζζ>wzv + bv]∑
w′ exp[ζζζ>wzw′ + bw′ ]

, w 7→ θθθw = (zw, ζζζw, bw) ∈ R2m+1 (word2vec)

→ A refined model includes bias parameters and two embeddings per word.

Note that the model is invariant with respect to the absolute position of observation pairs
as long as they co-occur within the defined context. One can thus define the sufficient
statistics

Nvw := |{t : xt = w, xt+4 = v, 4 ∈ I}| (3.42)

with which we can express the log-likelihood function as follows:

`(θθθ; x) =
∑
v,w

Nvw

(
〈ζζζw, zv〉+ bv − ln

∑
u∈Σ

exp[ζζζ>wzu + bu]︸ ︷︷ ︸
normalization constant

)
. (3.43)

One can maximize this function with generic first order methods such as gradient descent.
However, for large scale applications it is very inconvenient to have to compute the
normalizing constants in every step as they scale with the size of the vocabulary |Σ|.

Q Are there alternate choice for the objective function that avoid the expensive
computation of normalizing constants?

3.3.3 Negative Sampling
The original word2vec paper [31] proposes to overcome the complexity bottleneck by
reducing the prediction problem to a classification problem. Note that if our goal is to
learn representations, the actual prediction task we consider to learn the representations
is not prescribed. There is a priori no right or wrong. We are hence free – modulo to
practical/experimental success – to modify the prediction problem. For an observed pair of
word (v, w) let us consider the binary classification model known as the logistic model

p(v |w) = σ(v, w;θθθ) := σ(〈ζζζw, zv〉+ bv), σ(z) =
1

1 + exp[−z]
∈ (0; 1) . (3.44)

We can interpret this as the probability for v to co-occur in a context with w. The
probability will be larger for more frequent words v, which can be controlled explicitly
by bv, as well as for words that have a large inner product in their word vectors with the
conditioning word w. It is then natural to define the positive multiset of examples as the
actually co-occurring pairs

S+ = [(xt, xt+4) : t = 1, . . . , T, 4 ∈ I] (3.45)
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However, if we want to formulate a classification problem, we also need negative examples,
otherwise the problem would degenerate.

Q In setting up a classification problem for skip-grams, how can we define negative
examples?

One simple way to create negative examples is via sampling random pairs.

S− = {(xt, vtj : t = 1, . . . , T, vtj
iid∼ q, j = 1, . . . , r} (3.46)

This can be interpreted as follows: (1) One selects each word occurrence in the corpus with
the same frequency r. (2) For each occurrence xt one select r words (iid) at random as
negative context words.4 (3) All negative words are drawn from the same distribution q
independent of context. Now we can use standard statistical inference to define an objective,
namely the logistic log-likelihood

`(θθθ; x) =
∑

(w,v)∈S+
lnσ(v, w;θθθ) +

∑
(w,u)∈S−

ln(1− σ(u,w;θθθ)) (3.47)

→ The classification problem for skip-grams can be formalized by taking the
logistic log-likelihood as an objective function.

Obviously, if for positive examples, i.e.‘co-occurring word pairs, we want the probability of
co-occurrence under our model to be high (close to 1), whereas random pairs should have a
small probability (close to 0). There is a last modeling question that needs to be addressed:

Q What is a good choice for the distribution q used to sample negative word
pairs?

In principle, one could just use the relative frequencies p(w) of words to define the negative
sampling distribution q. This would ensure that we ignore the conditioning information
and (in the limit) reproduce the empirical marginals. However, based on experiments it
has been shown to be beneficial to slightly generalize this to the choice

q(w) ∝ p(w)α, α ≥ 0 (3.48)

where p(w) is the relative frequency of the word w in the corpus. A typical exponent used
in practice is α = 3/4, which slightly over-samples infrequent words. The intuition behind
this is that what matters most in learning semantic representations is not the very frequent
words – which often carry little meaning – and also not the very infrequent words, but the
in-between range.

4Note that one may randomly select words that are actually occurring in the context window. Such
conflicts, leading to some amount of label noise, are ignored, as they do not make much of a difference in
practice.
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3.3.4 Pointwise Mutual Information

Q How can we further justify and understand the negative sampling approach?

Let us denote by p(v, w) the true distribution of co-occurring words and by q(v, w) =
p(w)q(v) the distribution used for negative sampling. What would be the optimal classifier
that could be achieved by the embedding model? It is the so-called optimal Bayesian
classifier. It can be written as

P((v, w) = true) =
πp(v, w)

πp(v, w) + (1− π)q(v, w)
(3.49)

where π and 1− π are the prior probabilities of true and false (i.e. random) pairs. If we
consider the pre-image under the logistic function, some easy calculations shows

h∗vw = σ−1

(
πp(v, w)

πp(v, w) + (1− π)q(v, w)

)
= ln

p(v, w)

q(v, w)
+ ln

π

1− π
(3.50)

So, in the case of balanced classes π = 1
2 and α = 1 we get

h∗vw = ln
p(v, w)

p(w)q(v)
(3.51)

which can be identified as the contribution of the pair (v, w) to the mutual information,
the so-called point-wise mutual information.

→ The word2vec approach with balanced negative sampling (and α = 1) can
be interpreted as a method to maximize the mutual information of word
co-occurrences.

3.3.5 GloVe and Matrix Factorization

Q Can we think of word embedding models for co-occurrences in terms of matrix
factorization?

We now aim to connect word embeddings to the topic of matrix factorization. Let us
consider the co-occurrence counts and the square matrix formed by them

Nij := {(t, t′) : xt = wi, xt′ = wj , (t′ − t) ∈ I} (3.52)

We can use the convention ln(0) = 0 and then consider the matrix of log-counts. The
so-called GloVe (global word vector) objective is given by

`(θθθ,N) =
∑

v,w:Nvw>0

f(Nvw)
[
lnNvw − ln N̂vw

]2
, N̂vw = p̃(v, w;θθθ) (3.53)

which is a weighted squared loss on the log-scale. The weighting function f is a design
choice. A choice that has worked well in practice is

f(N) = min

{
1,

(
N

Nmax

)α}
, e.g. α = 3/4 . (3.54)
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Figure 3.12: Weighting function used in GloVe

See the plot in Figure 3.12. Now the clue with this objective is that we can work with an
unnormalized conditional probability distribution and simply chose

ln p̂(v, w) = 〈ζζζw, zv〉 (3.55)

without any normalization constant.

→ With the GloVe objective, one can work with unnormalized probability models.

The reason is that the squared objective is two-sided and will not degenerate without
normalization, whereas in a likelihood-based criterion, increasing probabilities is always
better and the balancing effect comes purely from the normalization of the probability
mass function (not all events can have high probability as they “compete" for probability
mass). As a final remark, one can also introduce bias terms, but can absorb these into the
embeddings, e.g. by clamping ζw1 = 1 and zw2 = 1 (∀w), say. Then ζw2 and zw1 take the
role of bias parameters.

The unnormalized view allows us to directly interpret the model in terms of matrix
factorization. Define with n = |Σ|

U> := [ζζζw1 · · ·ζζζwn ], V := [zw1 · · · zwm ], then ln N̂ = UV . (3.56)

The GloVe objective is a weighted Frobenius norm of the approximation residual between
the observed log-count matrix and a low-rank factorization of embedding matrices. Also
note that the use of two different embeddings is very natural in the context of matrix
factorizations.

→ The GloVe objective with a bi-linear embedding model can be thought of in
terms of a low-rank matrix factorization.

As a special case consider the weighting function

f(N) = min{1, N} . (3.57)

It results in a matrix completion problem

U,V
min→

∑
i,j:Nij>0

(lnNij − (UV)ij)
2 (3.58)



68 Chapter 3. Latent Variable Models

Figure 3.13: Nearest word to frog in a GloVe model along with illustrating photos.

As is clear from the view of GloVe as a matrix factorization problem, we have to resort to
approximation techniques to find a solution. There are a variety of options. We present
here a stochastic gradient approach that is particularly appealing. Sample a pair (v, w)
such that Nvw > 0 at random. Then perform updates with a step size η > 0 as follows

ζζζw ← ζζζw + 2ηf(Nvw) (lnNvw − 〈ζζζw, zv〉) zv (3.59)

zv ← zv + 2ηf(Nvw) (lnNvw − 〈ζζζw, zv〉)ζζζw (3.60)

→ One simple approximate optimization method to learn word embeddings is
stochastic gradient descent.

3.3.6 Discussion
Let us conclude this section by providing some examples of results and a brief discussion.
One can investigate word embeddings with regard to how well they capture semantic
similarity. An example for GloVe embeddings is shown in Figure 3.13. It is also well-known
that one can exploit the affine structure to solve word analogy problems. For instance king
is to man what w is to woman can be solves by

w = arg max
v
〈ζζζking − ζζζman + ζζζwoman, ζζζv〉 (3.61)

This affine structure can also be visualized in plots like shown in Figure 3.14.



3.3 Embeddings 69

Figure 3.14: 2d projection of word embeddings.





4. Deep Neural Networks

4.1 Compositional Models
4.1.1 Power of Compositionality

Q How can we build powerful models out of simple building blocks?

The world is complex. Building accurate models requires a powerful and flexible approach
to model design. We will consider here the general problem of learning an unknown vector-
valued function or map Ψ : Rn → Rp or simply a function ψ : Rn → R. There are three
general approaches to model design philosophies developed in the area of machine learning.

Feature Engineering
Feature Engineering relies on the use of domain knowledge to develop features, which make
relevant information explicit. In such representations, simple models such as a linear or
generalized linear ones are often sufficient to solve the task in question. Thus the role played
by learning from data is minimal. Feature engineering is applicable with very little data,
but is limited by requiring human ingenuity and effort in engineering suitable features.

Q How can we avoid the need for hand-crafted features?

Expansive Representations
A second strategy uses the idea of feature expansion: one first maps the input to a higher-
dimensional representation H : Rn → Rp, often with p � n and then uses an adaptable
linear map g to get ψ = g ◦H. The case where H is non-adaptable leads to important
methods such as kernel machines and Support Vector Machines (SVMs). The emphasis
is on how to obtain large – even infinite – dimensionality p, while retaining a tractable
learning algorithm and generalization capabilities. The idea of expansion is also used in
neural networks when considering wide layers (see below). It is clear that the more feature
we extract, the more powerful the resulting function.
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→ Feature expansion provides a basic principle to increase the complexity of
model classes.

Compositional Representation
An alternative – even more powerful – strategy is at the core of what has spurred enormous
progress in the last 10 years: the use of compositionality. Instead of expanding once into
a (fixed) high-dimensional feature representation, complexity is achieved and managed
through levels of composition or depth. We will first focus on what is known as a feedforward
network:

ψ = g ◦HL ◦HL−1 ◦ · · · ◦H2 ◦H1︸ ︷︷ ︸
depth L

, Hl : Rnl−1 → Rnl , n0 = n . (4.1)

We can also write this with argument in nested bracket form

ψ(x) = g(HL(. . . H2(H1(x)) . . . )) (4.2)

We refer to each map Hl as a layer map. Note that layers can be expansive nl > nl−1 or
non-expansive nl ≤ nl−1. The compositional structure in Eq. (4.1) implies that downstream
maps operate on the output of upstream maps. The partial maps Hl:1 := Hl ◦ · · · ◦ H1

produce intermediate representations. Due to the sequential nature of processing (Markov
property), these representations need to preserve task-relevant information about the input,
while making it more accessible and explicit with increasing depth l. The intuition behind
this can be illustrated with the example of object recognition in computer vision, where we
expect a DNN to extract more semantic, high-level features with depth (cf. Figure 4.1).

Figure 4.1: Visualization of intermediate feature representations.

→ Deep neural network combine compositionality (depth) with expansiveness
(width) to learn suitable signal representations.

Q How can we define adaptable layer maps to be composed in a deep neural
network?
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4.1.2 Ridge Functions
Arguably the simplest family of multivariate maps are linear maps that can be (finitely)
parameterized by a weight matrix

F : Rn(×Rm×n)→ Rm, F (x;ΘΘΘ) = ΘΘΘx, ΘΘΘ ∈ Rm×n (4.3)

Each component function of F represents a linear function, which is a weighted combination
of the inputs (and hence the name weight matrix). It is easy to see, however, that linear
maps are closed under composition and hence we cannot increase their modeling power
through composition.

Proposition 4.1.1 Let F and G be linear maps. Then H = G ◦ F is linear.

Proof. Let A be the matrix representing F and B the matrix representing G, then

H(x) = (G ◦ F )(x) = BAx = Cx, where C = BA

�

Q As linear maps are not suitable for compositional models. What is the simplest
extension of linear maps that unlocks compositionality?

Obviously we need to introduce non-linearity somewhere. It would be desirable to stick with
weight matrices and to not introduce additional (possibly complicated) parameterizations
for the non-linear part. Hence we could consider maps Φ ◦ F , where F is a parameterized
linear map and Φ : Rm → Rm is a fixed non-linear map. Following a minimalistic philosophy,
it seems appealing to define Φ independently per dimension as follows

Φ(x) =

φ(x1)
. . .

φ(xm)

 , φ : R→ R (4.4)

This approach has the advantage to work for any dimensionality m. It is minimalistic in
that we only need to define a single non-linearity φ, also known as an activation function.
The resulting functions and maps are sometimes also called ridge functions. Note that the
component functions takes the simple form

f(x) = φ(〈θθθ,x〉) (4.5)

with adjustable weights θθθ. We also call such an elementary function a unit or computational
neuron. The analogy to nervous systems is also where the name neural networks originates
from.

→ Ridge functions with fixed activation functions provide the most minimalistic
approach to generalize linear maps.

Minimalistic views have appeal, but one needs to make sure that they accomplish the
goals pursued. There is a research area dealing with questions of approximation power of
representation systems for functions. One of the classic fundamental results is that neural
networks with two composed layer maps (e.g. with one so-called intermediate or hidden
layer) are sufficient to approximate any continious function to a given (but arbitrary)
accuracy as long as one can increase the hidden layer width sufficiently and as long as φ is
not a polynomial.
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→ Neural networks with one hidden layer and a non-polynomial activation function
are universal function approximators.

This result is very clean, yet also coarse in that it does not differentiate between different
architectures and their compositionality. Recent work in the area of Deep Learning has
aimed to highlight the advantages of depth, for instance. This is, however, well-beyond the
scope of this lecture.

4.1.3 Sigmoid and Rectified Layers
For concreteness, let us consider the two most popular activation functions.

Sigmoid Layers
The first, classical choice is a sigmoid activation function, often chosen to be the logistic
function or the hyperbolic tangent

σ(z) =
1

1 + e−z
, tanh(z) =

ez − e−z

ez + e−z
, tanh(z) = 2σ(2z)− 1 (4.6)

This has often been motivated as a soft-threshold function, which also incorporates the
biologically motivated idea of saturation. Layers or networks with such activation functions
are often called sigmoid layers or networks, respectively. Logistic units are also often used
as output activations, when implementing a probabilistic binary classifier. This generalizes
logistic regression.

→ The choice of a logistic activation function leads to sigmoid networks, also used
in the classical multi-layer perceptron (popular in the second wave of neural
networks started in 1986, called connectionism).

Piecewise Linear Layers
The second, more modern choice is the rectified linear unit (ReLU) or soft-plus function,

h : Rn → R, h(x) = (〈θθθ,x〉)+ (4.7)

(z)+ = max{0, z} (4.8)

This activation function consists of two linear pieces. If we combine it with a linear function,
then the input space is partitioned into two halfspaces

X+ = {x : 〈w,x〉 > 0}, X− = Rm −X+ , (4.9)

such that the unit is linear on X+ and constantly 0 on X−.

→ Rectified layers are used in many modern architectures and are linear on a
halfspace of its inputs, zero on the complementary halfspace.

4.1.4 Classical MLP
Let us discuss a concrete example of a DNN to sharpen our understanding, before we move
to a more abstract level. Possibly the single most important neural network architecture is
the 3-layer MLP (multi-layer percetron): a true rock star! This reference architecture for n
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inputs and a single output has a hidden layer with m sigmoid units. We can easily write
down the modeled function as

ψ(x;βββ;ΘΘΘ) =
m∑
j=1

βj
1 + exp[−〈θθθj ,x〉]

(MLP)

Each unit computes a specific weighted combination of input features and applies a logistic
activation function. These activations (in range (0; 1)) are then summed up with weights βββ.

→ The MLP is the classical reference architecture for neural network.

Figure 4.2: Diagrammtic sketch of a 3 layer MLP.

Let us see how we can compute gradients for an MLP that can be used to tune its
parameters. Assuming a squared loss, elementary calculations yield

∂ 1
2(ψ(x)− y)2

∂βj
=

ψ(x)− y
1 + exp[−〈θθθj ,x〉]

(4.10)

∂ 1
2(ψ(x)− y)2

∂θji
=

ψ(x)− y
1 + exp[−〈θθθj ,x〉]

· βjxi
1 + exp[〈θθθj ,x〉]

(4.11)

Let us derive the somewhat more involved second part in small steps.

∂ 1
2(ψ(x)− y)2

∂θji
= (ψ(x)− y)︸ ︷︷ ︸

residual δ

∂ψ(x)

∂θji
(4.12)

∂ψ(x)

∂θji
= βj

∂σ(〈θθθj ,x〉)
∂θji

= βjxi σ
′(〈θθθj ,x〉)︸ ︷︷ ︸
derivative of

logistic function

(4.13)

The calculation concludes by exploiting the easily checkable fact that

σ′(z) = σ(z)(1− σ(z)) = σ(z)σ(−z) (4.14)
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Learning then typically proceeds via Stochastic Gradient Descent via selecting a random
minibatch St from the training data S at every iteration t. We then calculate a (random)
update direction as

4ϑ(βββ,ΘΘΘ) :=
∑

(x,y)∈St

∂ 1
2(ψ(x;βββ,ΘΘΘ)− y)2

∂ϑ
, ϑ ∈ {βi, θji} (4.15)

ϑt+1 = ϑt − η 4ϑ(βββt,ΘΘΘt) (4.16)

where η > 0 is a suitably chosen step size parameter. The cardinality B = |St| is called the
mini-batch size. B = 1 corresponds to the classical SGD algorithm. Note that the partial
derivative of each specific parameter ϑ depends on all other parameters, i.e. (βββ,ΘΘΘ).

Implementing an MLP and vanilla gradient-based learning (where St = S, for simplicity)
requires just a few lines of code.

class MLP3():
def __init__(self ,n,m):

self.theta = np.random.uniform (-1/n,1/n,(m,n)) # mxn
self.beta = np.random.uniform (-1/m,1/m,(1,m)) # 1xm
self.n = n
self.m = m

The forward propagation can be implemented as follows:

def forward(self , x):
f = {}
net_in = np.dot(self.theta ,x) # mxn*nxs=mxs
f[’hid ’] = expit(net_in) # mxs
f[’out ’] = np.dot(self.beta ,f[’hid ’]) # 1xm*mxs=1xs
return f

where we retain the hidden layer activities. We can then compute gradients as follows

def gradient(self , f, x, y):
g = {} # beta gradients
delta = (f[’out ’]-y) # 1xs
g[’bet ’] = np.dot(delta ,f[’hid ’].T) # 1xs*sxm=1xm

# theta gradients
hid = f[’hid ’]
hid_sv = hid -hid*hid # sensitivities
outer = np.outer(self.beta.T,delta) # mx1*1xs=mxs
g[’tet ’] = np.dot(( outer*hid_sv),x.T) # mxs*sxn=mxn
return g

Compared to Eqs. (4.10),(4.11) we want to be able to work with data matrices. This
introduces another dimension of size s (=number of samples). In the final gradient
computation, we can reduce over this dimension by summing. We can then perform (batch)
gradient descent via

for k in range(steps):
f = model.forward(X)
g = model.gradient(f,X.Y)
model.beta = model.beta - (eta/s)*g[’bet ’]
model.theta = model.theta - (eta/s)*g[’tet ’]

→ Implementing gradient-based MLP learning just involves a few lines of code.
Deriving gradients is elementary.
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4.2 Backpropagation

Q How can deep neural network be generically trained efficiently?

Gradient-based methods like SGD are very – perhaps even unreasonably – effective in
training DNNs. This holds for training accuracy, but – more importantly – also for
generalization accuracy. We take this as given here and focus on algorithmic aspects. So the
above question is largely tantamount to the question of how to perform gradient descent,
which foremost involves the computation of gradients in computational models.

4.2.1 Single Unit

Q What is the error-gradient of the parameters of a single unit?

Consider a single (generic) unit h with associated parameters θθθ, h = φ(〈θθθ, z〉). Assume that
we can calculate the partial derivative of the loss with regard to h (the unit’s activation),

δ :=
∂`

∂h
, (4.17)

which is also called the error signal or delta for a unit. Intuitively this quantifies how
changing the activation of the unit influences the loss (in an infinitesimal sense). Note that
during learning, z is fixed as it is simply an upstream function of the input x, obtained
by forward propagating through the network. However, we are interested in the effect of
changing the parameter, which by the chain rule is given by

∇θθθ` =
∂`

∂h
∇θθθh = δ φ′(〈θθθ, z〉) z (4.18)

This is very intuitive:

→ The local parameter gradient is the product of an upstream vector, a (scalar)
downstream error signal, and the local sensitivity of the unit.

Q How can we compute error signals efficiently?

4.2.2 Jacobi Map Recurrence
The only remarkable thing about error backpropagation is how to organize the collective
computation of error signals for all units. Let us switch to a layer-map view. Below we
state an elementary recurrence, which follows directly from the chain rule (for k < L)

δδδk :=
∂`

∂Hk
=

[
∂Hk+1

∂Hk

]>
· ∂`

∂Hk+1
=: J>k+1 · δδδk+1 = J>k+1 · . . . · J>L · δδδL (4.19)

where the appearing matrices are the (transposed) Jacobi matrices of the respective layer
maps. The Jacobi matrix for Hk conveniently summarizing all partial derivatives of the
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layer (output) activations with regard to the layer input (activations). For a map H it is
defined as:

H : Rn → Rm, H(z) =

h1(z)
. . .

hm(z)

 , [JH ]ij :=
∂hi
∂zj

(4.20)

“Convenient" here means in particular that the Jacobi matrix of a composed map can be
written as a product of the Jacobi matrices of the elementary maps, which is exploited
in the above formula. It is important to stress that the Jacobi ‘matrix’ is – in reality – a
matrix-valued map. This, of course, follows from the fact that each partial derivative is a
function, which can be evaluated at an argument. The argument in question is implicit
in the hidden layer activation that are deterministically induced by an input. So every Jl
depends on an activation zl−1, which in turn depends on x. Note that δδδL will be a function
of an input-target pair (x, y). So the forward pass will determine all Jl as well as δδδL and
then a backward pass sequentially calculates δδδL−1, . . . δδδ1 in reverse order.

→ All error signals can be calculated in backward order through vector-matrix
multiplications with Jacobi matrices determined in the forward pass.

4.2.3 Losses and Error Signals
For the sake of concreteness, we simply derive the initial error signals for the the two most
popular loss functions. First consider the case of the squared loss, where ones has

`(x,y) =
1

2
(y −Ψ(x))2, δδδL =

∂`

∂HL
= Ψ(x)− y , (4.21)

which means that the backpropagation recurrence is initialized with the residual.
As a second special case, consider the logistic loss for y ∈ {−1, 1} and nL = 1

`(x, y) = − lnσ(yψ(x)), δL =
∂`

∂hL
= −yσ(−yψ(x)) (4.22)

4.2.4 Jacobi Matrices
Let us also shed some light on the Jacobi matrices for special choices of activation functions.
First notive that for linear layers with φ = id we simply get

JH = ΘΘΘ (4.23)

as the linearization of a linear map is just the map itself.
In the case of a ReLU layer, we get

JH = diag(χχχ) ΘΘΘ, χχχ ∈ {0, 1}m, χχχ = I[ΘΘΘz > 0] . (4.24)

This can be interpreted as follows: the Boolean variables χj indicate whether a unit is
active or not (given the current input). Inactive units are effectively removed in the
backpropagation step. For active units, the result agrees with the linear case. Conceptually,
we can also think of a ReLU as follows: given an input, prune all inactive units. The pruned
networks is just a linear DNN.

Finally, let us consider the case of sigmoid DNNs. Here we get an additional diagonal
matrix with unit sensitivities:

JH = diag(χχχ) ΘΘΘ, χχχ ∈ (0, 1)m, χχχ = σ′(ΘΘΘz) (4.25)
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4.3 Gradient Descent
The state-of-the-art methods for training DNNs are almost all variants of gradient descent.
We would like to collect some basic results here, which are entry points to a much richer
literature that continues to evolve and mature. Let ` : Rd → R be a differentiable objective
function and define the iterate sequence generated by gradient descent as

θθθk+1 = θθθk − η∇`(θθθk), η > 0, (4.26)

where θθθ0 is a starting point. A very fundamental question is the following:

Q Will gradient descent converge to an optimal solution and if so at what rate?

4.3.1 Convex Quadratics
Let us first consider the case of quadratic problems, which is not what is needed for DNNs,
but it is the simplest problem to study. Moreover, it allows for an exact analysis that can
inspire more general problems. Let us thus start with objectives of the type

`(θθθ) =
1

2
θθθ>Q θθθ − q>θθθ, Q : positive definite (4.27)

Q How can we characterize the (asymptotic) behavior of gradient descent on a
convex quadratic objective?

Let us diagonalize Q = UΛU> with orthogonal U. Then we can perform a change of basis
θθθ ← U>θθθ, q← U>q and effectively minimize the separable problem

`(θθθ) =

d∑
i=1

`i(θi), `i(ϑ) =
λi
2
ϑ2 − qiϑ, λi > 0 . (4.28)

The derivatives are `′i(ϑ) = λiϑ− qi, which leads to the first order optimality condition

θ∗i =
qi
λi
, `∗i := `i(θ

∗
i ) = − q2

i

2λi
(4.29)

In order to further simplify the analysis, let us shift each `i so that min `i = 0,

`i(ϑ) =
1

2λi
(λiϑ− qi)2 (4.30)

which completes the square. A gradient step results in

`i(ϑ− η(λiϑ− qi)) =
1

2λi
((1− λiη)(λiϑ− qi))2 = (1− λiη)2`i(ϑ) (4.31)

As long as η < 2/λi the objective decreases by a factor of less than 1 in every step. Coming
back to Eq. (4.27) we see that the condition that needs to be imposed on the step size is

η <
2

λmax
(4.32)

where λmax is the largest eigenvalue of Q.
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→ With appropriately chosen step size, gradient descent converges exponentially
fast to the minimum of a convex quadratic.

If we want to optimize the rate of convergence, we would best chose

η∗ = arg min
η

max
i

(1− ηλi)2 = arg min
η

max{ηλmax − 1, 1− ηλmin} (4.33)

which is attained at

ηλmax − 1
!

= 1− ηλmin ⇐⇒ η∗ =
2

λmax + λmin
(4.34)

and results in the bets rate of

ρ = (1− λminη
∗)2 =

(
λmax − λmin

λmax + λmin

)2

≤
(
κ− 1

κ+ 1

)2

, κ =
λmax

λmin
(4.35)

Here κ is the condition number of Q, which appears after dividing numerator and denomi-
nator by λmin.

Figure 4.3: Quadratic with κ = 10 and the gradient descent iterates.

4.3.2 Smoothness

Q How can we ensure gradient information remains informative in a neighborhood
around a point?

Fundamentally, it is clear that a local method like gradient descent can only work reliably, if
the gradient does not change too much relative to the step size taken. The typical condition
to ensure this is to require some degree of smoothness.

Definition 4.3.1 — Smooth Function. A differentiable function ` : Rd → R is L-smooth
for some L > 0, if

‖∇`(θθθ)−∇`(ϑϑϑ)‖ ≤ L‖θθθ − ϑϑϑ‖ (∀ θθθ, ϑϑϑ)

Smoothness of ` simply means that its gradient function ∇` is Lipschitz continuous with
constant L: within an ε-ball around any point the change of gradient cannot amount to a
norm difference of more than εL.

There are immediate implication of smoothness. For simplicity of argument, let us
assume that ` is twice (continuously) differentiable. We can apply Taylor’s theorem with
integral remainder and with some (unspecified) βββ arrive at

`(ϑϑϑ)− `(θθθ) = 〈∇`(θθθ),ϑϑϑ− θθθ〉+
1

2
(ϑϑϑ− θθθ)>∇2`(βββ)(ϑϑϑ− θθθ)

≤ 〈∇`(θθθ),ϑϑϑ− θθθ〉+
L

2
‖ϑϑϑ− θθθ‖2 (4.36)
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In the special case of gradient descent we have ϑϑϑ = θθθ − η∇`(θθθ) and thus

`(ϑϑϑ)− `(θθθ) ≤ −η
(

1− Lη

2

)
‖∇`(θθθ)‖2 (4.37)

which leads to a guaranteed decrease, if η < 2/L and to the optimal choice (relative to the
applied bound) of η = 1/L, im which case one gets

`
(
θθθ − 1

L∇`(θθθ)
)
− `(θθθ) ≤ − 1

2L
‖∇`(θθθ)‖2 . (4.38)

By identifying L and λmax, this is a natural generalization of the quadratic case.
The other relevant quantity on which the success of gradient descent hinges is the gradient

norm. If it vanishes (i.e. becomes too small too quickly as we approach a minimum), then
convergence may become prohibitively slow. One way to circumvent this problem is to ask
how quickly we reach a point of small gradient, assuming, this is in itself a good (enough)
solution.

Definition 4.3.2 — ε-Critical Point. Let ` be differentiable at θθθ, then θθθ is an ε-critical
point, if ‖∇`(θθθ)‖ ≤ ε.

We then get

Theorem 4.3.1 Gradient descent on an L-smooth, differentiable function ` finds an
ε-critical point in at most k = 2L(`(θθθ0)− `∗)/ε2 steps.

Proof. Note that with C := `(θθθ0)− `∗ ≥ 0

−C ≤ `(θθθk)− `(θθθ0) ≤ − 1

2L

k−1∑
r=0

‖∇`(θθθr)‖2 ⇐⇒ 1

k

k−1∑
r=0

‖∇`(θθθr)‖2 ≤ 2LC

k

This means that for at least one of the iterates ϑϑϑ ∈ {θθθ0, . . . , θθθk−1} we have that

‖`(ϑϑϑ)‖2 ≤ 2LC

k

!
≤ ε2 ⇐⇒ k ≥ 2LC

ε2

�

Practically speaking, as we calculate the gradients, we can easily check the gradient norm
condition and stop at the desired ε.

→ Smoothness is sufficient to find ε-critical points with O(ε−2) steps of gradient
descent.

4.3.3 Strong Convexity and the PL-Condition

Q What further conditions can guarantee (fast) convergence to a local minimum?

The key idea is to tie the gradient norm to the suboptimality of the solution. A classical
notion of how to do this is known as the PL-condition.
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Definition 4.3.3 — Polyak-Łojasiewicz Condition. A differentiable function ` obeys the
Polyak-Łojasiewicz Condition with parameter µ > 0, if and only if

1

2
‖∇`(θθθ)‖2 ≥ µ (`(θθθ)− `∗) (∀θθθ), `∗ = min

θθθ
`(θθθ)

The power of this condition is illustrated in the following theorem where the PL-condition
directly results in a geometric convergence guarantee.

Theorem 4.3.2 Let ` be differentiable, L-smooth and µ-PL. Then gradient descent with
step size η = 1/L converges at a geometric rate

`(θθθk)− `∗ ≤
(

1− µ

L

)k
(`(θθθ0)− `∗) .

Proof.
1. From Eq. (4.38)

`(θθθk+1)− `(θθθk) ≤ − 1

2L
‖∇`(θθθk)‖2

2. From the PL condition

−‖∇`(θθθk)‖2 ≤ −2µ(`(θθθk)− `∗)

3. Subtracting `∗ yields

`(θθθk+1)− `∗ ≤
(

1− µ

L

)
(`(θθθk)− `∗)

4. The claim follows by induction.
�

For simplicity, we analyzed η = 1/L, but note that L-smoothness implies L′-smoothness
for any L′ ≥ L and thus the result applies to any η ≤ 1/L.

→ The PL condition is a fundamental property that (combined with smoothness)
directly implies geometric convergence to the minimum.

Q What are well-known functions that obey the PL-condition?

When ` is convex, the PL-condition is implied by strengthening the convexity condition by
a lower quadratic bound.

Definition 4.3.4 — Strongly Convex Function. A differentiable function ` is µ-strongly
convex for some µ > 0, if it fulfills

`(ϑϑϑ) ≥ `(θθθ) + 〈∇`(θθθ),ϑϑϑ− θθθ〉+
µ

2
‖ϑϑϑ− θθθ‖2 (∀ ϑϑϑ, θθθ) .

Note that µ = 0 reduces to the special case of convex function. Also note that a positive
definite quadratic function is strongly convex with µ = λmin. For twice differentiable
functions, we can summarize succinctly:
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Proposition 4.3.3 Let ` be twice differentiable, µ-strongly convex and L-smooth, then

0 ≺ µI � ∇2`(θθθ) � LI, (∀θθθ)

→ Strong convexity lower bounds the smallest and the largest eigenvalue of a
locally quadratic approximation of `.

One may suspect that strong-convexity also avoids the vanishing gradient problem. Indeed,
the PL condition is implied by strong convexity.

Proposition 4.3.4 Let ` be µ-strongly convex, then it fullfills the PL condition with the
same µ.

Proof. Minimize both sides of the strong convexity condition

`∗ − `(θθθ) = min
ϑϑϑ
`(ϑϑϑ)− `(θθθ) ≥ min

ϑϑϑ

{
〈∇`(θθθ),ϑϑϑ− θθθ〉+

µ

2
‖ϑϑϑ− θθθ‖2

}
= 〈∇`(θθθ),− 1

µ
∇`(θθθ)〉+

µ

2

∥∥∥∥ 1

µ
∇`(θθθ)

∥∥∥∥2

= − 1

2µ
‖∇`(θθθ)‖2

as the minimizer is ϑϑϑ = θθθ− (1/µ)∇`(θθθ). From this the PL-condition follows by multiplying
both sides of the inequality with −µ. �

A typical situation where strong convexity emerges is the use of convex objectives ` that
include a norm-regularizer µ

2‖θθθ‖
2.

→ In Deep Neural Networks, the PL condition will typically not hold globally,
but possibly over a domain around a local minimum. It then ensures fast local
convergence to this critical point without making claims to its sub-optimality.

4.3.4 Saddle Points

Q What happens to gradient descent around saddle points?

In the non-convex case, the training objective of a DNN may contain saddle points. One
is then interested in the expected slow-down of gradient descent in the neighborhood of
saddles. Or put differently: one is interested in how long it takes to escape from the vicinity
of a saddle point. One generally strategy is then to add noise [22] or to exploit the noise
induced by stochastic gradient descent [7]. A formal treatment is beyond the scope of this
lecture.

→ Noisy gradient descent is a valid strategy to avoid slow-down in the vicinity of
saddle points.
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4.3.5 Momentum and Acceleration
As we have seen, one fundamental challenge in gradient descent arises from vanishing
gradients (i.e. gradient norms becoming small). Requiring conditions like the PL condition
is not solving anything, it is merely articulating a sufficient condition for plain gradient
descent to work well. The perhaps more interesting question is:

Q How can gradient descent be modified to avoid a slow down in regions of small
gradient norms?

The basic idea is to compensate small gradients by smoothness. If the objective is very
smooth, one can increase the effective step size, overcoming – to some extend – small
gradient norms. A very popular technique for implicit step size adjustment is known as
momentum. The name refers to the motivational idea from classical mechanics of introducing
a particle mass and of thinking of gradient descent as a discretization of the dynamics of
such a particle in the gradient vector field. The conceptually simplest incarnation is the
heavy ball method, which evolves iterates according to

θθθk+1 = θθθk − η∇`(θθθk) + β(θθθk − θθθk−1), β ∈ (0; 1) . (heavy ball)

Compared to plain gradient descent, there is a β-weighted term that lets the particle
extrapolate the change made in the previous update. It is not fully understood under
which conditions the heavy ball method has accelerated convergence, but it certainly can
accelerate the transient phase of gradient descent and it is known to obey local acceleration
[34]. Here, let us just provide a naïve explanation of what happens, if the gradient is
constant over many steps (smoothness)

θθθ1 − θθθ0 = −η∇`
θθθ2 − θθθ1 = −η(1 + β)∇`
θθθ3 − θθθ2 = −η(1 + β(1 + β))∇` = −η(1 + β + β2)∇`

...

So that in the limit

lim
k→∞

(θθθk − θθθk−1) = −η
∞∑
i=0

βi∇` = −
[

η

1− β

]
∇` (4.39)

→ By using large momentum, i.e. β → 1, one can (in principle) boost the
effective step size by an arbitrarily large factor.

Practically speaking, taking β too large will create oscillations and instabilities as ∇` will
not be constant. It is then often a matter of problem-specific hyper-parameter tuning
to select β, commonly in the range [0.9; 0.95]. Note that by our back-of-the-envelope
calculation the choice β = 0.9 provides the promise of a 10× acceleration.

There is a related, famous method known as Nesterov acceleration, which pursues the
same idea, but evaluates the gradient at the extrapolated point.

ϑϑϑk+1 = θθθk + β(θθθk − θθθk−1), (4.40)

θθθk+1 = ϑϑϑk+1 − η∇`(ϑϑϑk+1) . (4.41)
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This subtle change makes a huge difference in the know guarantees of convergence for convex
and strongly-convex functions. Nesterov acceleration is known to be (up to constants)
optimal in the convex case and accelerated in the strongly-convex case. The heavy-ball
method, however, is conceptually simpler and seems to be robustly result in benefits for
non-convex functions.

→ Theoretically better understood than Polyak’s heavy-ball method is Nesterov’s
accelerated gradient descent, which evaluates the gradient at the extrapolated
iterate.

4.3.6 Adaptivity
It turns out that it is often important to be able to adapt the learning rate per parameter
or dimension. This can be motivated from settings, where features are sparse, but also in
compositional models, where it may be hard (or impossible) to find a single learning rate
that yields good progress and convergence across a complex and deep architecture.

Q How can the effective step size be adapted per dimension?

The key idea is to use the history of gradients at previous iterates to influence the effective
step size. Let us define the monotonically increasing sequence

γki = γk−1
i +

[
∂i`(θθθ

k)
]2
, ∂i` :=

∂`

∂θi
(4.42)

γki corresponds to the sum of the squares of the i-th parameter’s partial derivatives along
the iterate sequence θθθ0, . . . , θθθk. We can use these estimates to adapt the step size per
parameter, i.e. by using a diagonal – so-called – pre-conditioner

θk+1
i = θki − ηki ∂i`(θθθk), ηki :=

η√
γki + δ

(AdaGrad)

with δ > 0 (small, for numeric stability). This resulting variant of gradient descent is called
AdaGrad. Parameters with historically smaller magnitudes of their partial derivatives are
updated with an effectively larger step size.

→ Adaptivity can be obtained by making use of the entire gradient history across
all iterates.

There is a sophisticated analysis of AdaGrad using regret bounds for the case of convex
objectives, see [11]. The details of this analysis are beyond our current scope. Practically
speaking, Adagrad drives the learning rate eventually to zero.

4.3.7 Adam and RMSprop

Q How can stochasticity, adaptivity and momentum be combined in a way
that works well for non-convex objectives? Or put differently: What is the
state-of-the-art learning algorithm for DNNs?
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We now come to discuss what can be rightfully called the state of the art learning algorithm
in DNNs, known as Adam (Adaptive Momentum Estimation). Adam uses an exponentially
weighted average to estimate the mean and variance of each partial derivative

gki = βgk−1
i + (1− β)∂i`(θθθ

k), β ∈ [0; 1], g0
i := ∂i`(θθθ

0) (4.43)

hki = αhk−1
i + (1− α)[∂i`(θθθ

k)]2, α ∈ [0; 1], h0
i := [∂i`(θθθ

0)]2 (4.44)

and then defines the iterate sequence

θk+1
i = θki − ηki gki , ηki :=

η√
hki + δ

. (4.45)

Note that the specific form of the update leads to an invariance with regard to re-scaling of
the partial derivatives, i.e. if ∂i` is rescaled by some ρi, this will cancel out (assuming δ → 0)

as gki and
√
hki will be re-scaled by ρi. In the case of axis-aligned quadratics, the allows to

adapt to the curvature. More details on Adam can be found in [24]. Adam without the use
of momentum (i.e. β = 0) is also known as RMSprop.

→ Practically successful is the use of exponential averaging of partial derivatives
and their variance to implement momentum and adaptivity in schemes like
Adam.

Of course, the gradient used in Adam will typically be stochastic based on some minibatch
of data points.

4.4 Convolutional Neural Networks
Much of the success of DNNs in the context of machine perception, in particular in machine
vision, has exploited convolutional layers and convolutional neural networks (CNNs). These
networks exploit certain invariances of the input patterns such as translational invariance
(and equivariance). Another way to look at this is that CNNs extract (the same localized)
features at every spatial or temporal location. We will start by introducing convolutions.

4.4.1 Convolutions
Integral Operators
Let us assume – for concreteness - we have a time-signal f , i.e. a function f : R → Rm.
We are interested in transforming f into a function Tf : R → Rm via an operator T .
The motivation is to extend the finite dimensional case of mapping x ∈ Rn to a feature
representation x 7→ φ(x) ∈ Rm, e.g. via a shallow learning machine or via a processing layer
in a DNN.

Q How can we represent an interesting class of operators for transforming
functions?

An important class of operators are integral operators, which rely on a representation via
kernels.
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Definition 4.4.1 — Integral Operator. Given a kernel H : R2 → R and an interval
t1, t2,∈ R ∪ {−∞,∞} we can define an operator (assuming the integral exists) via

(Tf)(u) =

∫ t2

t1

H(u, t)f(t) dt

Proposition 4.4.1 Integral operators are linear.

Proof. Follows directly from the linearity of the integral. �

In fact, if one extends the class of functions defining integral operators to generalized
functions known as distributions, then (essentially) every linear operator can be represented
as an integral operator. This is formally described by the Schwartz kernel theorem.

→ Essentially all linear operators have an associated kernel representation as an
integral operator.

Continuous Convolution
A particularly relevant class of integral operators are convolutions.

Definition 4.4.2 — Convolution. Given two functions f, h, their convolution is defined as

(f ∗ h)(u) :=

∫ ∞
−∞

h(u− t)f(t) dt =

∫ ∞
−∞

f(u− t)h(t) dt

This corresponds to an integral operator with kernel H(u, t) = h(u− t) operating on f . Or,
by symmetry, we can think of F (u, t) = f(u− t) operating on h.

Q What is special about convolutions and the operators they define?

Let us define a shifted function f∆

f∆(t) := f(t+ ∆) (4.46)

and consider the natural notion of translational or shift invariance.

Definition 4.4.3 — Shift Invariant Operator. An operator T is shift invariant, if for any
∆ ∈ R and function f in its domain

T (f∆) = (Tf)∆

Proposition 4.4.2 Let h be an arbitrary kernel. Then, the integral operator T defined by
Tf := f ∗ h defines a shift-invariant operator.

Proof.

(f∆ ∗ h)(u) =

∫ ∞
−∞

h(u− t)f(t+ ∆) dt

t7→t−∆
=

∫ ∞
−∞

h(u+ ∆− t)f(t) dt = (f ∗ h)(u+ ∆) = (f ∗ h)∆(u)

�
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The essential property exploited is the shift invariance of the kernel H(u −∆, t −∆) =
h(u − t) = H(u, t) (∀∆). Some additional comments: (1) The convolution operator is
commutative, one can exchange the function and the kernels. (2) Its existence depends
on integrability properties of f, h. (3) Typical use: f = signal, h = fast decaying kernel
function, often of finite support.

→ Convolutions define shift-invariant linear operators.

In fact, the converse is also true.

→ Any linear, translation-invariant transformation T can be written as a convolu-
tion with a suitable kernel h.

Discrete Convolution
In practice signals are typically (digitally) sampled and we need to consider the discrete
case. Let f, h : Z→ R. We can define the discrete convolution via

(f ∗ h)[u] :=
∞∑

t=−∞
f [t]h[u− t] (discrete 1d convolution)

We use rectangular brackets to suggest “arrays". It is easy to extend this to two dimensions:

(f ∗ h)[x, y] :=

∞∑
u=−∞

∞∑
v=−∞

f [u, v]h[x− u, y − v] (discrete 2d convolution)

A typical choice of h may involve a finite support in the form of a window size. For instance
h[t] = 0 for t 6∈ [tmin; tmax]. In practice, f will often also be defined only over a finite
domain.

Example 4.1 Let us define a small Gaussian kernel with support [−2 : 2] ⊂ Z.

h[t] =
1

16


6 t = 0

4 |t| = 1

1 |t| = 2

0 otherwise

As a consequence of the finite support, the convolution sum can be truncated

(f ∗ h)[u] =

u+2∑
t=u−2

f [t]h[u− t] =

2∑
t=−2

h[t] f [u− t]

=
6f [u] + 4f [u− 1] + 4f [u+ 1] + f [u− 2] + f [u+ 2]

16

�

There is a sibling to convolutions, known as cross–correlation. In the discrete case let
f, h : Z→ R, then

(h ? f)[u] :=
∞∑

t=−∞
h[t] f [u+ t] (cross–correlation)
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This is also called a “sliding inner product", the difference is just one of sign: u+ t instead
of u− t. This can be made even clearer by writing

(h ? f) = (h̄ ∗ f), where h̄[t] := h[−t], (4.47)

which follows from

(h ? f)[u] =

∞∑
t=−∞

h[t] f [u+ t] =

∞∑
t=−∞

h[−t] f [u− t] = (h̄ ∗ f ‘)[u] (4.48)

So the only difference is that the kernel is “flipped over". This has the side-effect to make
cross-correlations non-commutative.

4.4.2 Convolutional Networks
Goals

Q What is our goal with convolutional neural networks?

The idea of CNNs is to learn convolutional kernels and thereby transformations of
discretized signals, often over 1 (e.g. speech), 2 (e.g. images) or 3 (e.g. videos) dimensional
grids. If one restricts the support of the kernel, one can easily parameterize it finitely.
Typically, one does not implement convolutions, but – in an abuse of terminology – cross-
correlations. The following goals are associated with a CNN

• a compositional (i.e. layered) architecture for signal processing

• exploiting shift invariance

• exploiting locality and scale (e.g. temporal, spatial)

• learning (parameterized) kernel functions or filters

• increased statistical efficiency (vs. fully-connected DNNs)

→ Learn shift invariant linear transformations of signals by learning parameters
of convolutional kernels (or filters).

Computer Vision
Computer vision is an area where convolutional networks have been used with remarkable
success. Note that a pixel-based image representation is usually 3d, a regular two dimensional
sampling grid on which 3 color channels are measured (dependent on color models such as
RGB). Convolutional kernels are thus usually operating on 3-tensors. However the channel
dimension is permutation invariant and their numbering arbitrary.

The layer map of a CNN (with ReLU) can be formally written as follows:

zi,(u,v)︸ ︷︷ ︸
3-tensor

=

 n∑
j=1

∑
(δu,δv)∈∆

θi,j,(δu,δv)︸ ︷︷ ︸
4-tensor

xj,(u+δu,v+δv)︸ ︷︷ ︸
3-tensor


+

, i = 1, . . . , k (4.49)

Here, j sums over the n input channels, i indexes k output channels, and the range of
summation over offsets δu, δv is determined by the window ∆. The number of parameters
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Figure 4.4: 2d Convolution: single channel

Figure 4.5: Diagram showing a convolutional kernel for color images.

scales with n · k · |∆|. A single channel view of a 2d-convolution is shown in Figure 4.4,
whereas a multichannel convolution on an RGB input is depicted in Figure 4.5.

In addition to the discrete convolution and the pointwise non-linearity, there are
commonly used additional processing steps such as down-sampling (also known as strides)
of feature maps in order to reduce the dimensionality of the model. Down-sampling is
often combined with an operation called pooling, which can also be applied on its own. A
common parameter-free pooling layer is max-pooling over a window ∆ defined as follows

zi,(u,v) = max
(δu,δv)∈∆

xi,(u+δu,v+δv)

Q What does a suitable CNN architecture for computer vision look like?

The classical CNN architecture is perhaps best illustrated with a famous network known
as AlexNet [28] (current citation count 80k+) shown in Figure 4.6. One can see the
downsampling by strides of 2 (with a border effect) and an increase from channels from 3
(RGB) to 384. The transition from the convolutional layer to the first fully-connected layer
is critical in terms of model dimensionality.
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Figure 4.6: AlexNet from [28]

→ Typical CNN architecture for vision: pyramidal structure. With depth, less
resolution, more channels, fully-connected in the end.

One major innovation in CNN architectures for computer vision has been the use of
residual networks (ResNets, [19], 77k+ citations), which introduce shortcut connections to
avoid the vanishing gradient problem (see Figure 4.7).

Figure 4.7: Residual layer: block

ResNets allow for training of very deep models with hundreds of layers (see Figure 4.8).

Figure 4.8: ImageNet classification accuracy obtained by ResNets of different depth.

→ CNNs and ResNets have been major drivers of the perceptual AI revolution.





5. Generative Models

Let us consider the following setting. Patterns x are generated from some process with
law p(x). We define a θθθ-parameterized model p(x;θθθ) and want to chose θθθ such hat p(x)
and p(x;θθθ) become indistinguishable. Specifically, we are interested in models that do not
generate unnatural patterns and that generate natural patterns with approximately correct
probabilities. That is we want to avoid

p(x)� p(x;θθθ) ' 0 (mode collapse)

p(x;θθθ)� p(x) ' 0 (incorrect patterns)

For example, if the patterns are images of human faces, then we want to only generate images
that look like faces and if there are particular distributions of facial poses or expressions,
say, then we want the model to reproduce those in the correct proportions. For many data
sources of interest like images, audio, or video, the final yardstick of success is the perceptive
indistinguishability by humans. This motivation may sound straightforward (and perhaps
naïve), but it constitutes a significant departure from the type of models and objectives
traditionally investigated and deployed in statistics for many decades.

Q How can we formalize the notion of generative models and the ultimate criterion
of success as a machine learning problem?

5.1 Autoregressive Models
5.1.1 Likelihood-Based Model Inference

Let us start with the classical view in statistics. Learning a generative model may be
considered equivalent to the problem known as density estimation. The canonical inference
principle will be MLE (maximum likelihood estimation), which means we will chose θθθ∗ such
that

θθθ∗
max−→ E[ ln p(x;θθθ) ], x ∼ p(x) . (5.1)
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In practice, the expectation will typically be with regard to an empirical sample (aka
training set). Traditionally, model families under considerations have often been simple,
for instance belonging to exponential (sub-)families or mixture models, where a specific
parametric assumption is made.

R We have discussed mixture distributions as an example, where the main difficulty
was the non-concavity of the log-likelihood, which was (heuristically) overcome by
the use of Expectation-Maximization algorithm.

We will here focus on a specific problem of density estimation, namely one where the data
is high-dimensional as is common in AI when working with raw sensor data as images,
audio, or videos. Yet note that as we discussed in the context of convolutional neural
networks (CNNs), such data often obeys shift-invariance, which – when used intelligently –
counteracts the curse of dimensionality.

Q How can we learn probability densities of high-dimensional, shift-invariant
data?

5.1.2 Autoregressive Models
The conceptually simplest approach is to define models directly on the observables without
having to deal with latent representations (hidden layers) in DNNs. One fruitful idea is
the use of the chain rule to make models autoregressive. We assume that variables are
sequentially ordered and write

p(x;θθθ) = p(x1, . . . , xm;θθθ) =
m∏
t=1

p(xt|x1, . . . , xt−1;θθθ) . (5.2)

→ Autoregressive models break down the problem of generating high-dimensional
patterns by conditionally generating one variable at a time.

Note that often the conditioning context may be reduced, for instance by making a k-th
order Markov assumption. In the case of sequential data

p(xt|x1, . . . , xt−1;θθθ)
Markov

= p(xt|xt−k, . . . , xt−1;θθθ) (k-th order Markov chain)

Markov assumptions further simplify the model and unify the prediction problem, which
now always operates with a fixed size context.

R In areas like speech recognition and natural language processing, autoregressive
models with discrete variables have been used to learn language models based on
so-called word n-grams.

The classical linear model is the AR(k) model defined with white Gaussian noise as

Xt = θ0 +

k∑
i=1

θiXt−i + εt, εt
iid∼ N (0, σ2) (5.3)



5.1 Autoregressive Models 95

Such models and related ones like ARMA (autregressive-moving-average model) are very
common in time-series prediction. Note that autoregressive models operate strictly sequen-
tially. In the context of generative models, influential models that have been used with
some success include PixelCNN for image generation [40] and WaveNet for speech synthesis
[32].

5.1.3 PixelCNN

We will focus on PixelCNNs and define some scanning order for pixel (e.g. top-to-bottom and
left-to-right). The network then models the conditional distribution of an individual pixel
given preceding pixels. During image generation, one can generate the image sequentially
pixel-by-pixel in the chosen order (difficult to parallelize). One can think of the generation
process in terms of a masked convolution, where pixels that have not yet been generated
are masked out in the convolutional kernel. A simple example of a masked is shown in
Figure 5.1. The conditional model is discrete, i.e. in the case of grayscale images, each of

1 1 1 1 1

1 1 1 1 1

1 1 0 0 0

0 0 0

0 0 0

0

0

0

0

0 255

Figure 5.1: Masked 5× 5 convolutional kernel and a sketch of the image scanning process.

the 256 possible values has a probability (i.e. a histogram). In the case of color images,
RGB channels are generated sequentially. Some example images generated with PixelCNN
are shown in Figure 5.2. =

Figure 5.2: Synthetic images of African elephants (from [40])
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5.2 Normalizing Flows

5.2.1 Implicit Models

Q Can we leverage the power and flexibility of Deep Neural Networks for genera-
tive models?

Simple parametric models are often too limited in their representational power to be useful
as generative models for more challenging, high-dimensional problem.1 It has turned out,
however, that it is possible to leverage the power of DNNs for generative models. The basic
idea relates to latent variable models. Assume that we sample a latent code z from some
simple (often fixed) distribution such as a normal distribution. One then transforms z into
a pattern x with the help of a DNN, often with a purely deterministic map. This can be
thought of a transformation of random variables

X = F (Z;θθθ), Z ∼ N (0, I) . (5.4)

This implicit model transforms the original (simple) distribution, but does not explicitly
prescribe its density. A diagrammatic view of this approach to generative modeling is shown
in Figure 5.3 What makes this approach attractive is the so-called Law of the Unconscious

Figure 5.3: An implicit model uses a DNN to transform a simple low-dimensional distribution
in code space into a complicated high dimensional distribution in pattern space.

Statistician, which can be mathematically expressed as follows:

EX [g(X)] =

∫
(g ◦ F )(z) pZ(z)dz . (5.5)

Intuitively (and practically) it states that one can can compute or approximate expectations
with regard to a transformed random variable x = F (z) by sampling z and pushing
samples through the mapping F to obtain samples of x. As we will see below, Monte
Carlo approximations of expectations are often acceptable and sufficient. By lowering our
requirements and moving away from analytic representations, we will be able increase our
modeling power substantially.

→ Transforming random variables with DNNs leads to powerful implicit models
one can easily sample from.

In comparison to explicit or prescribed models we summarize:

1Traditional non-parametric methods also typically fail for high-dimensional problems.
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→ While a prescribed model specifies the density explicitly, an implicit model
specifies the transformation of samples instead.

While the above property is pivotal from a practical perspective, we may ask:

Q What is the density of an implicit model that transforms a given random
variables ?

To answer this question, we have to consider a formula known as integration by substitution.
We will state a version known as the bi-Lipschitz version.

Proposition 5.2.1 Let U ⊆ Rn be open and F : Rn → Rm be bi-Lipschitz map (Lipschitz
with a Lipschitz inverse). For any measurable h : F (U)→ R∫

U
(h ◦ F )(z) det|JF (z)|dz =

∫
F (U)

h(x) dx

where JF is the Jacobi matrix of F .

From this we obtain the following rule for the transformation of probability densities

x = F (z), pX(x) = pZ(F−1(x)) |det(JF )|−1 (5.6)

pX is called the pushforward of pZ .

→ Implicit models define probability densities on observables via the push-forward
of the latent code density. Evaluating the pushforward involves the inverse
map and its Jacobian determinant.

Q How can we restrict Deep Neural Networks to be able to perform Maximum
Likelihood Estimation?

5.2.2 Compositionality
The idea of normalizing flows is to work with bijections F which are convenient to compute,
invert, and for which we can efficiently calculate |det(∂F )|. We first note that for a
compositional map, it is sufficient to enforce these properties for the layer maps.

F = FL ◦ · · · ◦ F1, F−1 = F−1
1 ◦ · · · ◦ F−1

L (5.7)

det(JF ) =

1∏
l=L

det(JFl ◦ Fl−1:1), det(JF−1) = det(JF )−1 (5.8)

We can then write the log-likelihood

ln pX(x) = ln pZ(F−1(x))−
L∑
l=1

ln |det (JFl ◦ Fl−1:1) | (5.9)
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5.2.3 Affine Flows
Let us first study the simplest class of normalizing flows, those defined by affine transfor-
mations with an invertible linear map A ∈ Rn×n. We get

x = F (z) = Az +µµµ, JF = A, z = F−1(x) = A−1(x−µµµ), JF−1 = A−1 .
(5.10)

If z ∼ N (0, I), then we get x ∼ N (µµµ,AA>). So affine flows transforms an iid standard
normal random vector into a multivariate normal random vector with mean given by µµµ
and variance-covariance matrix AA>. Note that composing multiple such flows does not
increase the modeling power.

5.2.4 Planar and Sylvester Flows

Q How can we define a simple enough flow that is compositional and has an easy
to compute Jacobian determinant?

Let us consider a simple non-linear flow that effectively uses a layer with a single non-linear
unit with activation function φ to additively modify the identity function (cf. [36])

F (z) = z + φ(〈θθθ, z〉+ b)u . (5.11)

This model has 2n+1 parameters and changes the distribution in the direction of u, i.e. one
dimension at a time. Clearly, in order to transform all n dimensions, at least depth n is
needed. In general, as planar flows only allow for very limited layer maps, substantial depth
may be needed and the approach may only work well in small to medium dimensions. The
advantage of this formulation is that the the determinant can be explicitly calculated

|det(JF )| = |det(I + φ′(〈θθθ, z〉+ b)uθθθ>)| = |1 + φ′(〈θθθ, z〉+ b) 〈 u, θθθ〉| (5.12)

The last equality follows from the matrix determinant lemma by setting A = I.

Lemma 5.2.2 — Matrix Determinant Lemma.

det(A + uv>) = (1 + v>A−1u) det(A)

Corollary 5.2.3

det(I + uv>) = (1 + u>v)

Some examples of planar flows with different depth K are shown in Figure 5.4. One can
generalize this idea by allowing for m ≤ n units in the bottleneck layer and embedding this
m-dimensional subspace in Rn via U ∈ Rn×m

F (z) = z + Uφ(Az + b) (5.13)

This model has also been called Sylvester flow as it makes use of the Sylvester identity for
determinants.

Lemma 5.2.4 — Sylvester’s Determinant Identity. Let U,V> ∈ Rn×m, then

det(In + UV) = det(Im + VU)



5.2 Normalizing Flows 99

Figure 5.4: Depth K planar flow transformations of a Gaussian and the uniform density
(figure taken from [36]).

By comparison to planar normalized flows, there is more flexibility in trading-off the
complexity of the determinant of a m×m matrix vs. the increased modeling power.

→ Planar and Sylvester flows are simple instances of compositional normalizing
flows for problems of medium dimensionality (10s to 100s).

5.2.5 Invertible 1× 1 Convolutions

Q What other possibilities exist to define normalizing flows?

There is a wealth of models that has been suggested to control the trade-off of modeling
power vs. the extra cost of dealing with the Jacobian determinant. We here select a model
known as Glow [25], which has shown promise in the context of generating high dimensional
data like images. In the case of images, the model operates on 3-tensors with spatial
dimension p× q and r channels. The model transforms tensors through three layers: (1) a
normalization layer, (2) a 1× 1 convolution and (3) an affine coupling layer.

The normalization layer allows for an explicit control of the mean and variance of the
per channel response.2 The normalization and the convolution operate on the channel
dimension and one has independently at each spatial location (i, j):

z+
ij = W (diag(s)zij + b) , 1 ≤ i ≤ p, 1 ≤ j ≤ r (5.14)

It turns out that such a mapping can be parameterized via the LU decomposition as

W = PL(U + diag(s)) (5.15)

Where L is lower triagonal with ones on the diagonal and U is upper diagonal with zero
diagonal. P is a permutation matrix that can be chosen fixed (at random). It follows that
the determinant only depends on s as

|det(W)| = |det(diag(s))| (5.16)

which relies on the following simple lemma.
2A detailed discussion requires detailed background knowledge about batch normalization and related

techniques, which is beyond the scope of this lecture.
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Lemma 5.2.5 Let P be a permutation matrix, L,U be lower and upper triagonal, respectively.
Then:

|det(PLU)| = |det(diag(L)) det(diag(U))| =
∣∣∣(∏

i

lii

) (∏
i

uii

)∣∣∣
The affine coupling layer as suggested in [9, 10] is applied as a split along the channel

dimension and passes through one half of the variables, while the other half is modulated
by a function of the first. Define index sets

α, β ⊂ {1, . . . , n}, α ∪ β = {1, . . . , n}, α ∩ β = ∅, (5.17)

then with NN denoting a neural network mapping

(z++
α , z+

β ), z++
α = diag(σσσ) z+

α + τττ , (σσσ,τττ) = NN(z+
β ) (5.18)

This form ensures again that the log determinant just depends on σσσ. It is applied iteratively
by performing the random partition into index sets α and β at random.

To illustrate the effectiveness of Glow-based generation, Figure 5.5 shows examples of
synthetically generated images.

Figure 5.5: Faces generated by Glow, taken from [25]

→ There are many advanced normalized flow modules and architectures (r.g. Glow)
that result in very promising generative models.

5.3 Variational Autoencoders
Normalizing flows aim to retain a tractable likelihood function by constraining the architec-
ture to be invertible and the Jacobian determinant to be efficiently accessible. Another
strategy is to approximate the likelihood function by some lower bound and to maximize
the bound. We have seen this variational strategy with a parameterized family of lower
bounds be utilized with success for mixture models and topic models. We will now further
elaborate this idea in an approach known as variational autoencoders (VAEs).
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5.3.1 Evidence Lower Bound
We start again with the Evidence Lower BOund (ELBO).

log p(x;θθθ) = log

∫
p(x|z;θθθ) p(z)dz = log

∫
q(z)

[
p(x|z; θ)

p(z)

q(z)

]
dz (5.19)

≥
∫
q(z) log p(x|z; θ)dz−

∫
q(z) log

q(z)

p(z)
dz︸ ︷︷ ︸

=DKL(q || p)

=: `(θθθ, q; x) (5.20)

via Jensen’s inequality for any choice of the variational distribution over encodings q. Now
the basic idea in VAEs is to learn the variational parameters: instead of chosing a q for
every x, we learn a parameterized model and get the VAE objective

`(θθθ,ψψψ; x) =

∫
q(z|x;ψψψ) log p(x|z;θθθ)dz−DKL(q(z|x;ψψψ) || p(z)) (5.21)

which depends on the parameters θθθ of the generative model as well as the parameters ψψψ of
the so-called inference model.

→ The variational ELBO can be implemented as a separate model known as the
inference model.

5.3.2 Inference Models

Q How can we design suitable inference models?

Inference models are probabilistic models that generate a latent code z from a pattern x.
One may wonder: What is gained by having to learn two probabilistic models instead of just
one? And in which ways are the requirements on inference models different from those on
generative models? There is a general belief that a conditional distribution that conditions
on a high-dimensional pattern to produce a lower dimensional code needs to be less powerful
than a model that transforms a simple code distribution into a high-dimensional data law.
A common choice is therefore one, where the stochasticity in the inference model is only
added-in at the end. For instance a typical approach is to learn a deterministic mapping
and to add noise via a learned, anisotropic covariance matrix, i.e.

E[z|x;ψψψ] = µµµ︸︷︷︸
mean fct

◦ G(x;ψψψ)︸ ︷︷ ︸
DNN

, Cov[z] = ΣΣΣ︸︷︷︸
cov fct

◦ G(x;ψψψ)︸ ︷︷ ︸
DNN

. (5.22)

where it is assumed that q(z|x) is a normal distribution. The DNN produces a penultimate
representation from which an output layer predicts the parameters of the normal distribution.
Often the covariance model is further constrained, for instance to be a diagonal matrix plus
a low-rank matrix. In the case of an unconstrained covariance matrix, we already know
that we can model a multivariate normal as a linear flow of iid standard normals. So we
can alternatively define

z = µµµ(G(x)) + A(G(x)) εεε, εεε ∼ N (0, I) (5.23)

Sampling z |x then involves (i) deterministically computing G(x) and then (ii) randomly
sampling one or more iid instantiations of εεε. One can also extend the inference model to
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compose the dimension reduction map G by a normalizing flow (other than the linear one).
In fact this is an area, where normalizing flow have been first proposed and investigated. In
this more general case the DNN will predict the parameters of the flow as a function of x.

→ Normalizing flows are suitable transformations that can be combined with
DNNs to implement inference models.

5.3.3 VAE Learning
Note that the conditional model p(x|z) is deterministic, possibly feeding into a squared
error loss, i.e. Gaussian log-likelihood, between a DNN-predicted x̂ and a training pattern x.
It is then a standard approach to perform a Monte Carlo approximation of the expectation
w.r.t q(z|x). We can simply sample from q and use those samples as inputs to the generative
model. We can then train the latter via standard backpropagation.

x
infer7→ G(x)

sample7→ εεε

flow7→ z
generate7→ x̂ 7→ `(x, x̂) (5.24)

As it is simple to draw iid samples and as one typically performs SGD, one often only
samples a single instance per pattern in a minibatch.

→ VAE learning of the generative model can be done via backpropagation using
samples from the inference model.

Optimizing the ELBO over the variational model and its parameters involves gradients
of expectations. However the flow-based representation parameterizes a transformation,
which is driven by a fixed noise source such as an iid Gaussian. This is also known as the re-
parameterization trick. In the case of affine flows, we compute G(x) on the forward pass and
then perform Monte Carlo sampling of instances εεε. For each sample, we can backpropagate
through the flow and further through G. This is also known as the re-parameterization
trick [26].

→ VAE learning of the inference model can be carried out with backpropagation
using the reparameterization trick and sampling.

It has been experimentally found that in practice the KL-term effectively performs regular-
ization and that it is advantageous to control its influence with a hyper-parameter. This is
also called β-VAE [20]. Finally. we show a diagrammtic view of an VAE in Figure 5.6.

5.4 Generative Adversarial Networks
5.4.1 Generation as Classification

We have seen that maximum likelihood estimation can be used as an inference principle in
generative models, but that it comes with drawbacks: It may severely limit the structure and
complexity of the admissible transformations as in auto-regressive models and normalizing
flows. Or, as seen in the ELBO-based VAE, one may have to resort to approximate inference.
On top of this, one may even question not just the practicability, but also the suitability of
likelihood-based inference, if we take indistinguishability of distributions as the goal.
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Figure 5.6: Diagrammtic view of a VAE as an autoencoder.

Q Is the likelihood function (really) the canonical criterion to use in generative
modeling?

It has been a seminal idea, first published in [17], to think of generative models in terms of
a classification problem. Clearly, if indistinguishability is the goal, then the most natural
criteria seems to be the error of a classifier that aims to distinguish between samples drawn
from the real distribution p(x) vs. the generative model p(x;θθθ). This binary classification
problem can be formally characterized by the joint distribution

p(x, Y ;θθθ) =
Y

2
p(x) +

1− Y
2

p(x;θθθ), Y ∈ {0, 1} (5.25)

Here an outcome Y = 1 refers to the samples generated from the true distribution whereas
Y = 0 refers to the synthesized samples. We have used a balanced approach with equal class
probabilities P{Y = 1} = P{Y = 0} = 1

2 . Let us now assume a classifier – often referred
to as discriminator – is given, which is a function π : Rn → [0; 1], which we interpret as a
prediction for the probability of x coming from the true distribution, i.e. π(x) ≈ P{Y = 1|x}.
Then we can use the logistic loss (or classification log-likelihood – different from the
generative log-likelihood!) as a criterion

`(θθθ;π) = Eθθθ [Y lnπ(x) + (1− Y ) ln(1− π(x))] (5.26)

Note that the dependency on the parameters θθθ of the generative model is indirect through
the expectation Eθθθ, which is with regard to the distribution constructed as in Eq. (5.25).
For the sake of clarity we can write out explicitly

θθθ
min−→ `(θθθ;π) =

1

2

∫
lnπ(x)p(x)dx︸ ︷︷ ︸

constant wrt θθθ

+
1

2

∫
ln(1− π(x))p(x;θθθ)dx︸ ︷︷ ︸

θθθ-dependent

(5.27)

→ Generative modeling can be directly associated with a (probabilistic) classifica-
tion problem and its logistic loss.

Example 5.1 Let us try to illustrate this further by assuming that there is a region U ⊆ Rn
such that π(U) > 1 − ε, i.e. where the classifier has a high confidence of samples being
‘genuine’. Then the loss in the θθθ-dependent part is < ln(ε)

ε→0−→ −∞. If the generative
model succeeds in putting non-vanishing probability mass on U , i.e. generating x ∈ U , then
it can make the loss arbitrarily small in the ε→ 0 limit. In the pidgin language of Deep
Learning pop culture: the generator can “fool" the discriminator. Thus the discriminator π
should be calibrated to not be overconfident about claiming patterns to be non-synthetic. �
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5.4.2 Optimal-Bayes Discriminator

Q What discriminator should be used to judge indistinguishability?

Let us first consider an idealized case, where the classifier is ‘perfect’, the gold standard for
perfection being the Bayes-optimal classifier. We can easily obtain it from Bayes rule as
the posterior probability of Y , namely

π∗(x) = P{Y = 1|x} =
p(x)

p(x) + p(x;θθθ)
(5.28)

We can insert this formula into the objective in Eq. (5.26) and obtain

Eθθθ[Y lnπ∗(x) + (1− Y ) ln(1− π∗(x))] (5.29)

=
∑

Y ∈{0,1}

∫ [
Y ln p(x) + (1− Y ) ln p(x;θθθ)

]Y p(x) + (1− Y )p(x;θθθ)

2
dx

−
∫

ln(p(x) + p(x;θθθ))
p(x) + p(x;θθθ)

2
dx

=− 1
2H(p)− 1

2H(p(θθθ)) +H
(

1
2(p+ p(θθθ)

)
− ln 2 = JS(p, p(θθθ))− ln 2

where JS refers to the Jensen-Shannon divergence between probability distributions, which
can also be expressed in terms of Kullback-Leibler divergences between the distributions
and their mixture

JS(p, q) = 1
2KL(p || 1

2p+ 1
2q) + 1

2KL(q || 1
2p+ 1

2q) (5.30)

→ Optimizing the generator so as to maximize the logistic-loss of the Bayes-
optimal classifier is equivalent to minimizing the Jensen-Shannon divergence
between the true distribution and the model.

This is insightful and has led to various generalizations that use other divergence measures
as the criterion. However, note that the analysis and discussion so far relied on the optimal
Bayes classifier, which obviously is neither known, nor accessible in many cases of interest.

5.4.3 Learned Discriminators

Q How can we practically define a discriminator to train generative models?

In many cases of practical relevance we would ultimately like humans to be judges of the
quality of generated data. But clearly having humans in-the-loop during training is a no-go
due to lack of scalability. We thus need to learn a classifier and it seems most successful
to learn it jointly with the generative model. As we want to harness the power of deep
learning, we may decide to also use a DNN for the discriminator, although this is not a
necessity. We first note that taking the Bayes-optimal classifier as the reference point, we
can φφφ-parameterize a family of discriminators and get

`(θθθ;π∗) ≥ sup
φφφ
`(θθθ;π(φφφ)) = sup

φφφ
Eθθθ [Y lnπ(x;φφφ) + (1− Y ) ln(1− π(x;φφφ))] (5.31)
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This suggests to maximize the criterion with regard to φφφ, aiming to find the classifier with
the lowest logistic loss in expectation. We thus get a saddle point problem

θθθ∗ = arg min
θθθ

{
max
φφφ

`(θθθ;φφφ)

}
, φφφ∗ = arg max

φφφ
`(θθθ∗;φφφ) (5.32)

This formulation of generative models is also known as Generative Adversarial Networks
(GANs). The generator model and discriminator model are thought of as ‘adversaries’ as
they try to optimize a common objective in opposite directions (with opposite sign).

R Under conditions of the Nash’s existence theorem for Nash equilibiria (different
versions exist) the can also identify

φφφ∗ = arg max
φφφ

min
θθθ
`(θθθ.φφφ) (5.33)

where the order of min and max is no interchanged. In this view, we can also think
of GANs as a two-player zero-sum game over continuous action spaces with actions
given by the paraneters θθθ and φφφ, respectively.

→ One can define generative modeling as a zero-sum game between two adver-
saries a generator and a discriminator. This is known as GANs (Generative
Adversarial Networks).

One practically relevant issue with the GAN objective arises, when the discriminator –
during the process of learning – reliably detects all generated samples as synthetic. Then
Eq. (5.27) fails to deliver reliable gradient information (vanishing gradients). This is often
circumvented by instead minimizing

θθθ
max−→

∫
lnπ(x;φφφ)p(x;θθθ)dx (5.34)

which greatly amplifies the gradient in regions where π(x;φφφ) is close to zero.

5.4.4 Extragradient Method

Q How can we train GANs in the spirit of gradient-based optimization methods
like SGD?

GANs are one the few examples in machine learning, where learning can not be cast as a
simple minimization/maximization problem. The most naïve approach to try to numerically
solve the saddle-point problem is to perform alternating SGD, e.g. in terms of the original
objective

θθθt+1 = θθθt − η
∂`

∂θθθ
(θθθt,φφφt), φφφt+1 =

{
φφφt + η ∂`∂φφφ(θθθt+1,φφφt) asynchronous
φφφt + η ∂`∂φφφ(θθθt,φφφt) synchronous

(5.35)

These iterations may converge to a saddle, but this is not guaranteed and it can be shown
that one of the failure modes of the asynchronous variant are limit cycles, whereas the
synchronous version may in fact diverge (cf. [38]). There is also a wealth of other problems
that need to be overcome, often with heuristics or simply with ’tricks of the trade’ and
tuning.
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Figure 5.7: DCGAN Architecture

→ GAN training may require a lot of tuning of hyperparameters for models and
algorithms. Convergence of learning is often not guaranteed.

There has been much work on how to improve on alternating SGD in a way that convergence
guarantees can be made. We here only sketch the idea of extra-gradients invented by [27]and
first suggested for GANs in [14]. The idea is compute the gradient at an extrapolated point
(like in Nesterov methods) using the synchronous method in Eq. (5.35) and then to update

θθθt+2 = θθθt − η
∂`

∂θθθ
(θθθt+1,φφφt+1), φφφt+2 = φφφt + η

∂`

∂φφφ
(θθθt+1,φφφt+1) (5.36)

So the main difference is that an intermediate step is made just to get a better estimate of
the update direction. The committed iterates are then given by the even iterates (θθθ2t,φφφ2t).

→ There are several modifications of alternating or synchronous gradient descen-
t/ascent that stabilize GAN training, including extragradient methods.

5.4.5 Evaluation
Evaluating (trained) GANs is a non-trivial problem of its own. Note that the value of
the objective cannot be used to judge/rank found solutions. Computation of a likelihood
score on hold-out data can often only be done in a practically feasible manner using crude
approximations. An alternative is the inception score, which can be used for images [38].
One can also compare pairs of generator-discriminator pairs and cross-evaluate the objective
[37].

→ Automatic evaluation of GANs remains a challenge and a largely unresolved
problem.

5.4.6 Architectures
An early success has been the architecture suggested in [35] ans is known as DCGAN
(deconvolutional GANs). A diagrammatic view is shown in Figure 5.7. To get a sense of
the quality of generated images, some examples for bedroom images can be seen in Figure
5.8. Recent progress has led to generative models like BigGAN [4] or StyleGAN [23] that
synthesize images that are remarkably photorealistic as can be seen from Figure 5.9.
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Figure 5.8: Bedroom images generated by DCGAN.

Figure 5.9: Photorealistic face images generated with a StyleGAN model.
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