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1 Feedforward networks, RNINs and CNNs (30 pts)

1.1 Activation Functions

1. Show that the hyperbolic tangent function tanh(z) = £ is related to the sigmoid

e’ e

function o(r) = —— by tanh(z) = 20(2x) — 1, where = € R.
1+4+e

y=o(z).




1.2 Training/Back-propagation

Given a training dataset D = {(x,,%,)}Y,, where x, € R” and ¢, € {0,1}. We consider a
binary classification problem with a neural network consisting of one single hidden layer and two
hidden neurons parametrized by 6 = {wy, W, by, by, vg, v1,v2}. The class conditional is given
by:

p(tn|xn) = 0<U0 + Ulg(w{xn + bl) + U2g(ngn + b2)> )

where g(a,) = e~2% and o(a,) = variable a,, € R.

_ 1
l4+e—on?!

1. Based on the assumption that the training data is i.i.d. , write down the log likelihood for
the class conditioned on the inputs (cross-entropy error function):

2 pts

2. Calculate the partial derivatives of the cross-entropy function with respect to the model
parameters w, by and vy by using chain-rule. You can write the derivatives for just one
datapoint (x,,t,).

5 pts




1.3 Loss Functions

Given a linear model f(x,w), where x, w € RP, defined as:
D
f(x,w) =w + Z w;T;
i=1
and the sum-of-squares error loss given by:

Bw) = %nﬁfjl{fm,m 0l

where t,, is the target class for variable x,,. Suppose that Gaussian noise ¢; ~ N(u = 0, 0?)
(with zero mean and variance 0?) is added to each input variable x; independently, i.e.
A D
f(x,w) =wo + sz(fb’z + €)
i=1

By using Ele;] = 0 and E[e;e;] = d;;02, show that minimizing the error loss over the noise

distributions:
. 1 R 2
L(w) = 3 ; {f(:z:n,w) — tn}
is equivalent to minimizing the sum-of-squares loss for noise-free variables with the addition
of a weight-decay regularization term, in which the bias parameter (wp) is omitted from the
regularizer, i.e. prove that E[L(w)] = L(w) + : 3°7  w?o?




1.4 Backpropagation through time

1. Consider a bidirectional recurrent neural network with inputs x = 1.7, forward hidden
states hy = hy 1.7, backward hidden states h, = Ny, 1.7 and outputs y = y;.7.

hys = Fr(xe, hys1;0)

hpe=o(hyse)
hyy = Fy(xy, hy t41; 0)
hyt = U(}_lb,t)

Yt = G(hf,t; .t K)
Liotal := L(y)

where Fy, F}, and G are smooth vector valued functions, L is a smooth function into the
reals, o is an elementwise nonlinearity, # and x are parameter vectors and the initial states
hyo and hy 71 are given. Note that L depends on all outputs y; through yz.

Calculate %, the derivative of the total loss with respect to the parameters 6.

The final answer should only contain partial derivatives of functions with respect to their
direct parameters, meaning it should not be possible to expand them further using the
chain rule.

4 pts




1.5 True / False

Which of the following claims are true/false? (1 point per correct answer, -1 point per incorrect
answer, non-negative total points in any case)

4 pts

1. A recursive neural network will generate - for the same input of length n - only Olog(n)
hidden states, compared to the O(n) hidden states of a recurrent neural network.
[ ] True [ ] False

2. The GRU and LSTM architectures seen in class violate the Markov assumption of basic
RNNs.

[ ] True [ ] False

Consider the Seq2Seq framework, which maps arbitrary length input sequences to arbitrary
length output sequences.

3. The encoder of a seq2seq network does not have to be an RNN. It could also consist of

only convolutional, pooling and fully connected layers.
[ ] True [ ] False

4. The decoder of a seq2seq network does not have to be an RNN. It could also consist of
only convolutional, pooling and fully connected layers.

[ ] True [ ] False



1.6 CNNs

Not all images are two-dimensional. Medical devices such as MRI and CT scans produce 3D
image data, which is made of voxels instead of pixels. An N x M x K image [ with C channels
is thus an element of RY x RM x RX x RY. It contains C' values (e.g. density, heat, resonance,
etc.) for each voxel location (n,m, k).

Analogous to 2D-image convolutions, we would like to create a convolution that employs trans-
lation invariant feature detection by convolving filters over the spatial domain at each location
for a desired number L of output channels. Further, our filters should have equal side length F'
in each spatial dimension.

1. What will be the size of one of our filters (call it V;)?

3. Using a stride of S and zero-padding of P, which is the width and height of the feature
map after applying the filter with equal side length of F'?

1 pts

4. Write down the formula for the convolution. How do we obtain the value of a location
(n,m, k, 1) of the output O7?




2 Learning & Optimization (30 pts)

2.1 Optimization
A) Consider the function f(x) where x = [z x5] € R? defined as
(@1, 22) = (21 — 23).

1. Find a critical point of f(x). Is this a local maximum, a local minimum or a saddle point?
Justify your answer.

2 pts
2. Initialize Newton’s method at time step 0 at x° = [z 29] = [10 10]. Write down
x! = [z] xl] after one step of Newton's method. Is x; a local minimum?
4 pts

B) Consider the function f(x) = x"Ax +b'x + ¢, where x,b € RY ¢ € R and A € R¥*?,

1. Write down the update of Newton's method after one step. What do you observe?

4 pts




2. Show that if A is not positive definite (i.e. some eigenvalues are negative) then f(x) is
unbounded from below (i.e. goes to —c0).
Hint: Recall that A is positive definite if there exists x # 0 such that x' Ax > 0.

3 pts

2.2 Activation function

Consider the function f(x; W) = ReLU(Wx), where x € R? corresponds to some input features
and W € R™*4 is a matrix of weight parameters.

1. Write-down the gradient and the Hessian of the function f(x; W) with respect to W.

3 pts

2. Write-down the Taylor expansion of f(x; W) around some Wz > 0 (> element-wise).

2 pts




2.3 Critical points

1. Let x € R™ and f(x) € R be of class C? (i.e. first two derivatives exist and are contin-
uous). Show that if x* € R™ is a local minimum for f then Vf(x*) = 0 and V?f(x*)
positive semi-definite.

No points if you only show V f(x*) = 0.

2. If Vf(x*) =0 and V2f(x*) positive definite, then x* is a strict local minimum.
Recall: x* is a strict local minimum point if there exists some € > 0 such that, for all
x € R™ within distance ¢ of x* with x # x*, we have f(x*) < f(x).

4 pts

2.4 Regularization

Which of the following claims are true/false? (1 point per correct answer, -1 point per incorrect
answer, non-negative total points in any case)

3 pts

a) The regularization imposed via constrained optimization always forces the weight vector
to decay during the course of the optimization.
[ ] True [ ] False

10



b) When regularizing via early stopping, parameter values corresponding to directions of
significant curvature (of the objective function) are regularized more than directions of
less curvature.

[ ] True [ ] False
c) Dropout aims to approximate bagging but with an exponentially large number of neural

networks.
[ ] True [ ] False

11



3 Factor models, autoencoders, latent representation

(30 pts)

3.1 Sufficient statistics

Let's denote the examples by x € R?, where d is the number of features. The labels are denoted
by y € {1,..., K}, where K is the number of classes. Logistic regression considers the following
discriminative model for classification:

plulx.w) = s expl (). ()

where w, € R?, for each of the labels y € {1,..., K}, are the parameters of the model,
i.e. in total we have dK parameters. For simplicity we use w to denote all the parameters of
the model, we could do this for example by concatenation of the individual w,'s. Z(w,x) =
>, exp({wy, x)) denotes the partition sum; we will find it convenient to denote the log partition
sum by A(w,x) := log Z(w,x), it is sometimes also called cumulant generating function or
moment generating function.

The distribution in equation (1) can be cast as an exponential family distribution, which for
example also contains the Gaussian distribution. In general an exponential family distribution
has the following form:

p(x(0) = exp((0, s(x)) — A(6)), A(0) ZIOg/eXp((O,S(X»)dX

where 0 are called the natural parameters and s(x) the sufficient statistics.

One can derive a number of important properties about exponential family distributions:

1. Show that the derivatives of the cumulant generating function A(f) are given as the
moments of the sufficient statistics, i.e.

ag;e) = Ep(xjo)[s ()]
852)(29 = COVp(x|9) [S(X)]

12



2. Show that the cumulant generating function A(6) is convex w.r.t. the parameters 6.

3 pts

3.2 Autoencoders

Let a two layer linear auto-encoder with m units and no biases be parametrized by weights
C € R™*4 (encoder) and D € R**™ (decoder).

1. Given datapoints x1, ..., X, write down the objective of the reconstruction problem.

2 pts

2. After training, you are given the decoder D but only a corrupted version of the encoder
C. (1/2 point per correct answer, -1/2 point per incorrect answer, non-negative total points in
any case)

2 pts

Assume C is a sheared version of C and you know the exact shearing matrix. (Hint: A
shear matrix is invertible but non-orthogonal.) True or false:

We can adjust D so that:

(a) The mapping x — z stays the same [ ] True [ ] False
(b) The mapping x — X stays the same [ ] True [ ] False

Assume C is a rotated version of C and you know the exact shearing matrix. True or
false:

We can adjust D so that:

(a) The mapping x — z stays the same [ ] True [ ] False

(b) The mapping x — X stays the same [ ] True [ ] False

13




3. Now let's assume that the autoencoder has tied weights D = CT and we actually know
that C has been subject to a rotation described by a rotation matrix R. Give an adapted
version D (as a function of D) so that the mapping x — X stays the same.

2 pts

3.3 Regularized Autoencoders

Let us consider a regularized variant of an autoencoders called " contractive autoencoder”. Given
a dataset D = {x®}7_, x*) € R? and an encoder function f as well as decoder g, we want
to minimize the following objective,

L= lx=g(fE)IP+MITpx)I%

xeD

2
where ||J¢(x)|IF = >, (%) is the Frobenius norm of the Jacobian of the encoder f.

1. Describe the regularizer's effect on f when the regularizer dominates the loss, e.g. A — 00
(no calculation required)

2 pts

2. Let us assume that the autoencoder is linear and it uses tied weights (f and g share
weights W). Show that in this setting, the regularizer is equivalent to an 12-regularizer
on the weights W.

4 pts

14



3.4 Deep Latent Gaussian Models (DLGMs)

1. Which of the following claims are true/false? (1 point per correct answer, -1 point per
incorrect answer, non-negative total points in any case)

4 pts
The ELBO is a lower bound.
[ ] True [ ] False
The ELBO is an approximation to the true, intractable posterior.
[ ] True [ ] False
Optimizing the ELBO implies minimizing the entropy of the variational distribution.
[ ] True [ ] False

Optimizing the ELBO implies maximizing the KL divergence between the variational dis-
tribution and the prior over the latent variables.

[ ] True [ ] False

2. Let's look at a simple DLGM as presented in the lecture consisting of the following
ingredients (from input to output)

e A neural recognition network (u(x),¥(x)) = fo(x) mapping inputs to a Gaussian
parametrization. The network itself is parametrized by 6.

e A sampling step z ~ N (u(x), 3(x))

e A neural reconstruction network X = g¢(z) mapping back to the input space. The

network itself is parametrized by &.

The stochastic nature of DLGMs makes learning the network more challenging. Explain
which parameters, 6 or &, are affected and why.

15



3. In the lecture you have seen continuous latent variables coming from a Gaussian distri-
bution. For discrete latent variables, we could use a multinomial distribution. However,
when using stochastic back-propagation for such a model there is a conceptional problem.
Which? (just point to the issue, no detailed explanation necessary)

2 pts

16



4.1

Undirected Deep Models & Generative models (30
pts)
Generative Adversarial Networks

For scalar x and y, consider the value function V(x,y) = xy. Does this game have an
equilibrium? If so, where is it?

2 pts

The training criterion for the discriminator D, given any generator (5, is to maximize the
quantity V(G, D)

V(G,D) = / Paa (@) log(D () )z + / p=(2)log(1 - D(g(2)))d=

I/pdata(w) log(D(®)) + py(x) log(1 — D(x))dx (2)

Show that for G fixed, the optimal discriminator D{,(x) is

% o Pdata (11)
Polw) = Pdata(T) + py() ®)

3. Express this optimal discriminator D.(x) using a sigmoid o, a logarithm and pgata, pg-

1 pts

17



4. Using that ¢'(-) = o(-)(1 — o(+)), show that if D (x) # 1, then

V. log(DE(x)) 2_ . e ) e
H 1_DE(:B) H = ||V 10g(Pdata()) — Vg g(pg( N2 (4)

Remark. Note that as the generator depends on some parameters 6, so does the quan-
tity J(0) = [ [|Velog(Paata(®)) — Vi log(pg(x))||*paata(x)d. Now we assume that,
although we don't have access to pyata in practice, we can compute Vy.J(6) using some
trick. (Optimizing this quantity is called score-matching.)

5. Consider the two quantities

30) = Brrgy (D(0)) 31 (0) = By, (I THEDL ) - )

For each of them, explain if and why, in practice, we can or cannot compute their gradients
with respect to 6.

2 pts

18



4.2 Restricted Boltzmann Machines
Suppose that we are given a restricted Bolztmann machine (RBM) with energy function
E(x,z)=—2"Wx —c'z - bz,

where x is the input and z the hidden variable. Assume that both x and z are binary vectors,
e—E(z,z)

i.e. x,z € {0,1}. The joint probability density is given by p(x,z) = “—;

1. Express p(x) in the form Z~'e=F®) (i.e. marginalize over z), and express F' using the
non-linearity defined by s(z) = log(1 + exp(z)). We call F the free-energy.

4 pts

2. The non-linear function s(z) = log(1 + exp(z)) can be seen as a smooth version of an-
other non-linear function commonly used in neural networks. Which function is this?

1 pts

19



4. Show that E,(Vw E(x, z)|x) = —yx’ where y is a vector that you will define, depend-
ing on @, and using a sigmoid.

4 pts

4.3 Deep Belief Networks

Suppose that we are given a deep belief network (DBN), consisting of a restricted Bolztmann
machine (RBM) with energy function

E(z?), 20) = _OTW®) ,6) _ pT,0) _ p@T ()

with joint probability density given by p(z®, 2®) = Z=1e=E(=2") then stacked successively
with two sigmoid belief networks (as in the lectures), 2(*) on top of z(?), and then x on top of
2z, meaning that

p(2) = 1]22) = o (0 + WD)
and

plai =11zY) = o (0 + W2),

Assume we only consider binary vectors for & and the z()'s, i.e. with coordinates in {0, 1}.

1. (Factorisation of a DBN) In the following expression, replace the [0's by either of x, 2
22 or 203,
p(x, 2V, 2%, 2®) = p(O, D)p(0|0)p(0]0). (6)

20



2. Express p(x, z™1), 22, 2(3)) as a function of the parameters of the DBN.

3. (Variational bound) Now assume that we are trying to approximate p(z™"|z) by ¢(z™"|x).
Show that

log(p(x)) = > q(zV|@)log (p(z, ) = > q(zV|z)log (q(zV[x)).  (7)

Z(l) z(l)

4. Recall that the KL-divergence between two probability distributions P and () is defined
by Dgr(Q||P) = >, Qi) 1og(g8). Reformulate the previous inequality using a KL-
divergence.

1 pts
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