Prof. T. Hofmann

Final Exam

February 7, 2017

First and Last name:	
Student ID (Legi) Nr:	
Signature:	

General Remarks

- Please check that you have all 24 pages of this exam.
- There are 120 points, and the exam is 120 minutes. **Don't spend too much time on a single question!** The maximum of points is not required for the best grade!
- Remove all material from your desk which is not permitted by the examination regulations.
- Write your answers directly on the exam sheets. If you need more space, make sure you put your **student-ID**-number on top of each supplementary sheet.
- Immediately inform an assistant in case you are not able to take the exam under regular conditions. Later complaints are not accepted.
- Attempts to cheat/defraud lead to immediate exclusion from the exam and can have judicial consequences.
- Please use a black or blue pen to answer the questions.
- Provide only one solution to each exercise. Cancel invalid solutions clearly.

	Topic	Max. Points	Points Achieved	Visum
1	Feedforward networks, RNNs and CNNs	30		
2	Learning & Optimization	30		
3	Factor models, autoencoders, latent representation	30		
4	Undirected Deep Models & Generative models	30		
Total		120		

Crada.				
Graue.	 	 	 	

$1 \quad Feedforward \ networks, \ RNNs \ and \ CNNs \ \ {\tiny (30 \ pts)}$

1.1 Activation Functions

1.	Show that the <i>hyperbolic tangent</i> function $\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ is related to function $\sigma(x) = \frac{1}{1 + e^{-x}}$ by $\tanh(x) = 2\sigma(2x) - 1$, where $x \in \mathbb{R}$.) tl	he <i>s</i>	igmoid
		3	pts	
2.	Show that the inverse of the <i>sigmoid function</i> is given by: $\sigma^{-1}(y) = \ln y = \sigma(x)$.	$\left(\frac{y}{1}\right)$	$\left(\frac{y}{-y}\right)$,	where
		3	pts	

1.2 Training/Back-propagation

Given a training dataset $D=\{(\mathbf{x}_n,t_n)\}_{i=1}^N$, where $\mathbf{x}_n\in\mathbb{R}^D$ and $t_n\in\{0,1\}$. We consider a binary classification problem with a neural network consisting of one single hidden layer and two hidden neurons parametrized by $\theta=\{\mathbf{w}_1,\mathbf{w}_2,b_1,b_2,v_0,v_1,v_2\}$. The class conditional is given by:

$$p(t_n|\mathbf{x}_n) = \sigma\left(v_o + v_1 g(\mathbf{w}_1^T \mathbf{x}_n + b_1) + v_2 g(\mathbf{w}_2^T \mathbf{x}_n + b_2)\right),$$

where $g(a_n)=e^{-\frac{1}{2}a_n^2}$ and $\sigma(a_n)=\frac{1}{1+e^{-a_n}}$, variable $a_n\in\mathbb{R}.$

1.	Based on the assumption that the training data is i.i.d., write down the log the class conditioned on the inputs (cross-entropy error function):		od for
		2 pts	
2.	Calculate the partial derivatives of the cross-entropy function with respect parameters w_1, b_1 and v_0 by using chain-rule. You can write the derivative datapoint (\mathbf{x}_n, t_n) .		
		5 pts	

1.3 Loss Functions

Given a linear model $f(\mathbf{x}, \mathbf{w})$, where $\mathbf{x}, \mathbf{w} \in \mathbb{R}^D$, defined as:

$$f(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{i=1}^{D} w_i x_i$$

and the sum-of-squares error loss given by:

$$L(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ f(x_n, \mathbf{w}) - t_n \right\}^2$$

where t_n is the target class for variable x_n . Suppose that Gaussian noise $\epsilon_i \sim \mathcal{N}(\mu=0,\,\sigma^2)$ (with zero mean and variance σ^2) is added to each input variable x_i independently, i.e.

$$\hat{f}(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{i=1}^{D} w_i (x_i + \epsilon_i)$$

By using $\mathbb{E}[\epsilon_i] = 0$ and $\mathbb{E}[\epsilon_i \epsilon_j] = \delta_{ij} \sigma^2$, show that minimizing the error loss over the noise distributions:

$$\hat{L}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ \hat{f}(x_n, \mathbf{w}) - t_n \right\}^2$$

is equivalent to minimizing the sum-of-squares loss for noise-free variables with the addition of a weight-decay regularization term, in which the bias parameter (w_0) is omitted from the regularizer, i.e. prove that $\mathbb{E}[\hat{L}(\mathbf{w})] = L(\mathbf{w}) + \frac{1}{2} \sum_{i=1}^{D} \mathbf{w}_i^2 \sigma^2$

2 - 1 - 1 - 1 - 1 - 1 - 1	_		
	4	pts	
***************************************	• • •		

1.4 Backpropagation through time

1.	Consider a bidirectional recurrent neural network with inputs $x = x_{1:T}$,	forward	hidder
	states $h_f = h_{f,1:T}$, backward hidden states $h_b = h_{b,1:T}$ and outputs $y = y$	1:T·	

$$\begin{split} \bar{h}_{f,t} &= F_f(x_t, h_{f,t-1}; \theta) \\ h_{f,t} &= \sigma(\bar{h}_{f,t}) \\ \bar{h}_{b,t} &= F_b(x_t, h_{b,t+1}; \theta) \\ h_{b,t} &= \sigma(\bar{h}_{b,t}) \\ y_t &= G(h_{f,t}, h_{b,t}; \kappa) \\ L_{\text{total}} &:= L(y) \end{split}$$

where F_f , F_b and G are smooth vector valued functions, L is a smooth function into the reals, σ is an elementwise nonlinearity, θ and κ are parameter vectors and the initial states $h_{f,0}$ and $h_{b,T+1}$ are given. Note that L depends on all outputs y_1 through y_T .

Calculate $\frac{\partial L_{\text{total}}}{\partial \theta}$, the derivative of the total loss with respect to the parameters θ . The final answer should only contain partial derivatives of functions with respect to their direct parameters, meaning it should not be possible to expand them further using the chain rule.

4 pts

1.5 True / False

Which of the following claims are true/false? (1 point per correct answer, -1 point per incorrect answer, non-negative total points in any case)
4 pts
1. A recursive neural network will generate - for the same input of length n - only $\mathcal{O}\log(n)$ hidden states, compared to the $\mathcal{O}(n)$ hidden states of a recurrent neural network. [] True [] False
The GRU and LSTM architectures seen in class violate the Markov assumption of basic RNNs. [] True [] False
Consider the Seq2Seq framework, which maps arbitrary length input sequences to arbitrary length output sequences.
 The encoder of a seq2seq network does not have to be an RNN. It could also consist of only convolutional, pooling and fully connected layers. True [] False
4. The decoder of a seq2seq network does not have to be an RNN. It could also consist of only convolutional, pooling and fully connected layers. [] True [] False

1.6 CNNs

Not all images are two-dimensional. Medical devices such as MRI and CT scans produce 3D image data, which is made of *voxels* instead of pixels. An $N \times M \times K$ image I with C channels is thus an element of $\mathbb{R}^N \times \mathbb{R}^M \times \mathbb{R}^K \times \mathbb{R}^C$. It contains C values (e.g. density, heat, resonance, etc.) for each voxel location (n, m, k).

Analogous to 2D-image convolutions, we would like to create a convolution that employs translation invariant feature detection by convolving filters over the spatial domain at each location for a desired number L of output channels. Further, our filters should have equal side length F in each spatial dimension.

1.	What will be the size of one of our filters (call it ∇_i)?	1 pts	
2.	How many of these filters do we need for such a convolution operation?	1 pts	
3.	Using a stride of S and zero-padding of P , which is the width and height of map after applying the filter with equal side length of F ?	of the fo	eature
4.	Write down the formula for the convolution. How do we obtain the value (n,m,k,l) of the output ${\cal O}?$	of a loc	cation

2 Learning & Optimization (30 pts)

2.1 Optimization

A) Consider the function $f(\mathbf{x})$	\mathbf{x}) where $\mathbf{x} = [x_1$	$x_2] \in \mathbb{R}^2$	defined	as
	$f(x_1, x_2)$	$= (x_1^2 - x_2^2 - x_3^2 - x$	x_2^2).	

1. Find a critical point of $f(x)$. Is this a local maximum, a local minimum or a substify your answer.	saddle p	oint?
2. Initialize Newton's method at time step 0 at $\mathbf{x}^0 = [x_1^0 \ x_2^0] = [10 \ 10]$. $\mathbf{x}^1 = [x_1^1 \ x_2^1]$ after one step of Newton's method. Is \mathbf{x}_1 a local minimum?	Write	down
	4 pts	
B) Consider the function $f(\mathbf{x}) = \mathbf{x}^{\top} \mathbf{A} \mathbf{x} + \mathbf{b}^{\top} \mathbf{x} + c$, where $\mathbf{x}, \mathbf{b} \in \mathbb{R}^d, c \in \mathbb{R}$ and c	$\mathbf{A} \in \mathbb{R}^d$	$^{l\times d}$.
1. Write down the update of Newton's method after one step. What do you o	bserve? 4 pts	

2.	Show that if \mathbf{A} is not positive definite (i.e. some eigenvalues are negative) then $f(\mathbf{x})$ is unbounded from below (i.e. goes to $-\infty$). Hint: Recall that \mathbf{A} is positive definite if there exists $\mathbf{x} \neq 0$ such that $\mathbf{x}^{\top} \mathbf{A} \mathbf{x} \geq 0$.		
	3 pts		
2.2	Activation function		
	der the function $f(\mathbf{x}; \mathbf{W}) = ReLU(\mathbf{W}\mathbf{x})$, where $\mathbf{x} \in \mathbb{R}^d$ corresponds to some input features $\mathbf{W} \in \mathbb{R}^{n \times d}$ is a matrix of weight parameters.		
1.	Write-down the gradient and the Hessian of the function $f(\mathbf{x}; \mathbf{W})$ with respect to \mathbf{W} .		
	3 pts		
2.	Write-down the Taylor expansion of $f(\mathbf{x}; \mathbf{W})$ around some $\mathbf{W}x > 0$ (> element-wise).		
	2 pts		

2.3 Critical points

1.	. Let $\mathbf{x} \in \mathbb{R}^n$ and $f(\mathbf{x}) \in \mathbb{R}$ be of class C^2 (i.e. first two derivatives exist and are continuous). Show that if $\mathbf{x}^* \in \mathbb{R}^n$ is a local minimum for f then $\nabla f(\mathbf{x}^*) = 0$ and $\nabla^2 f(\mathbf{x}^*)$ positive semi-definite.				
	No points if you only show $\nabla f(\mathbf{x}^*) = 0$.				
		5 pts			
2.	If $\nabla f(\mathbf{x}^*) = 0$ and $\nabla^2 f(\mathbf{x}^*)$ positive definite, then \mathbf{x}^* is a <i>strict</i> local minimum Recall: \mathbf{x}^* is a strict local minimum point if there exists some $\epsilon > 0$ such $\mathbf{x} \in \mathbb{R}^n$ within distance ϵ of \mathbf{x}^* with $\mathbf{x} \neq \mathbf{x}^*$, we have $f(\mathbf{x}^*) < f(\mathbf{x})$.		or all		
		4 pts			
2.4	Regularization				
	h of the following claims are true/false? (1 point per correct answer, -1 point er, non-negative total points in any case)	t per inco	orrect		
		3 pts			
a)	The regularization imposed via constrained optimization always forces the via decay during the course of the optimization. [] True [] False	weight v	ector		

b)	When regularizing via early stopping, parameter values corresponding to directions of
	significant curvature (of the objective function) are regularized more than directions of
	less curvature.
	[] True [] False
c)	Dropout aims to approximate bagging but with an exponentially large number of neural networks.
	[] True [] False

3 Factor models, autoencoders, latent representation (30 pts)

3.1 Sufficient statistics

Let's denote the examples by $\mathbf{x} \in \mathbb{R}^d$, where d is the number of features. The labels are denoted by $y \in \{1, \dots, K\}$, where K is the number of classes. Logistic regression considers the following discriminative model for classification:

$$p(y|\mathbf{x}, \mathbf{w}) = \frac{1}{Z(\mathbf{x}, \mathbf{w})} \exp(\langle \mathbf{w}_y, \mathbf{x} \rangle), \tag{1}$$

where $\mathbf{w}_y \in \mathbb{R}^d$, for each of the labels $y \in \{1, \dots, K\}$, are the parameters of the model, i.e. in total we have dK parameters. For simplicity we use \mathbf{w} to denote all the parameters of the model, we could do this for example by concatenation of the individual \mathbf{w}_y 's. $Z(\mathbf{w}, \mathbf{x}) = \sum_y \exp(\langle \mathbf{w}_y, \mathbf{x} \rangle)$ denotes the partition sum; we will find it convenient to denote the log partition sum by $A(\mathbf{w}, \mathbf{x}) := \log Z(\mathbf{w}, \mathbf{x})$, it is sometimes also called cumulant generating function or moment generating function.

The distribution in equation (1) can be cast as an *exponential family distribution*, which for example also contains the Gaussian distribution. In general an exponential family distribution has the following form:

$$p(\mathbf{x}|\theta) = \exp(\langle \theta, s(\mathbf{x}) \rangle - A(\theta)), \quad A(\theta) = \log \int_{\mathbf{x}} \exp(\langle \theta, s(\mathbf{x}) \rangle) d\mathbf{x}$$

where θ are called the natural parameters and $s(\mathbf{x})$ the sufficient statistics.

One can derive a number of important properties about exponential family distributions:

1. Show that the derivatives of the cumulant generating function $A(\theta)$ are given as the moments of the sufficient statistics, i.e.

$$\begin{split} \frac{\partial A(\theta)}{\partial \theta} &= \mathbb{E}_{p(\mathbf{x}|\theta)}[s(\mathbf{x})] \\ \frac{\partial^2 A(\theta)}{\partial \theta^2} &= \mathsf{Cov}_{p(\mathbf{x}|\theta)}[s(\mathbf{x})]. \end{split}$$

6 pts	

2.	Show that the cumulant generating function $A(\theta)$ is convex w.r.t. the parameters θ .
	3 pts
3.2	Autoencoders
	two layer linear auto-encoder with m units and no biases be parametrized by weights $\mathbb{R}^{m \times d}$ (encoder) and $\mathbf{D} \in \mathbb{R}^{d \times m}$ (decoder).
1.	Given datapoints $\mathbf{x}_1,\dots,\mathbf{x}_n$ write down the objective of the reconstruction problem.
	2 pts
2.	After training, you are given the decoder \mathbf{D} but only a corrupted version of the encoder $\tilde{\mathbf{C}}$. (1/2 point per correct answer, -1/2 point per incorrect answer, non-negative total points in any case)
	2 pts
	Assume $\tilde{\mathbf{C}}$ is a sheared version of \mathbf{C} and you know the exact shearing matrix. (Hint: A shear matrix is invertible but non-orthogonal.) True or false:
	We can adjust ${f D}$ so that:
	(a) The mapping $\mathbf{x} o \mathbf{z}$ stays the same $[]$ True $[]$ False
	(b) The mapping $\mathbf{x} \to \hat{\mathbf{x}}$ stays the same $[]$ True $[]$ False
	Assume $\tilde{\mathbf{C}}$ is a rotated version of \mathbf{C} and you know the exact shearing matrix. True or false:
	We can adjust ${f D}$ so that:
	(a) The mapping $\mathbf{x} \to \mathbf{z}$ stays the same $[]$ True $[]$ False
	(b) The mapping $\mathbf{x} \to \hat{\mathbf{x}}$ stays the same $[\]$ True $[\]$ False

3. Now let's assume that the autoencoder has tied weights $D = C^{\top}$ and we actually known that C has been subject to a rotation described by a rotation matrix R . Give an adapt version \tilde{D} (as a function of D) so that the mapping $x \to \hat{x}$ stays the same.	
2 pts	
3.3 Regularized Autoencoders	
Let us consider a regularized variant of an autoencoders called "contractive autoencoder". Given a dataset $\mathcal{D}=\{\mathbf{x}^{(k)}\}_{k=1}^n, \mathbf{x}^{(k)} \in \mathbb{R}^d$ and an encoder function f as well as decoder g , we want to minimize the following objective,	
$\mathcal{L} = \sum_{\mathbf{x} \in \mathcal{D}} \ \mathbf{x} - g(f(\mathbf{x}))\ ^2 + \lambda \ J_f(\mathbf{x})\ _F^2,$	
where $\ J_f(\mathbf{x})\ _F^2 = \sum_{ij} \left(\frac{\partial (f(\mathbf{x}))_j}{\partial \mathbf{x}_i}\right)^2$ is the Frobenius norm of the Jacobian of the encoder f .	
1. Describe the regularizer's effect on f when the regularizer dominates the loss, e.g. $\lambda \to$ (no calculation required)	∞
2 pts	
2. Let us assume that the autoencoder is linear and it uses tied weights (f) and g shaweights (f) . Show that in this setting, the regularizer is equivalent to an I2-regularizer on the weights (f) .	

3.4 Deep Latent Gaussian Models (DLGMs)

1.	Which of the following claims are true/false? (1 point per correct answer, -1 point per incorrect answer, non-negative total points in any case) 4 pts
	The ELBO is a lower bound.
	[] True [] False
	The ELBO is an approximation to the true, intractable posterior.
	[] True [] False
	Optimizing the ELBO implies minimizing the entropy of the variational distribution.
	[] True [] False
	Optimizing the ELBO implies maximizing the KL divergence between the variational distribution and the prior over the latent variables.
	[] True [] False
2.	Let's look at a simple DLGM as presented in the lecture consisting of the following ingredients (from input to output)
	• A neural recognition network $(\mu(\mathbf{x}), \Sigma(\mathbf{x})) = f_{\theta}(\mathbf{x})$ mapping inputs to a Gaussian parametrization. The network itself is parametrized by θ .
	$ullet$ A sampling step $\mathbf{z} \sim \mathcal{N}\left(\mu(\mathbf{x}), \mathbf{\Sigma}(\mathbf{x}) ight)$
	• A neural reconstruction network $\hat{\mathbf{x}}=g_{\xi}(\mathbf{z})$ mapping back to the input space. The network itself is parametrized by ξ .
	The stochastic nature of DLGMs makes learning the network more challenging. Explain which parameters, θ or ξ , are affected and why.
	3 pts

3.	In the lecture you have seen continuous latent variables coming from a Garbution. For discrete latent variables, we could use a multinomial distribution when using stochastic back-propagation for such a model there is a conception Which? (just point to the issue, no detailed explanation necessary)	n. Howe	ever
		2 pts	

	pts)		
4.1	Generative Adversarial Networks		
1.	For scalar x and y , consider the value function $V(x, y) = xy$. Does this g equilibrium? If so, where is it?	ame ha	ve an
	·	2 pts	
2.	The training criterion for the discriminator D, given any generator G , is to quantity ${\cal V}(G,D)$	maximiz	e the
	$V(G,D) = \int_{\boldsymbol{x}} p_{data}(\boldsymbol{x}) \log(D(\boldsymbol{x})) dx + \int_{\boldsymbol{z}} p_{\boldsymbol{z}}(\boldsymbol{z}) \log(1 - D(g(\boldsymbol{z})))$	dz	
	$= \int_{\boldsymbol{x}} p_{data}(\boldsymbol{x}) \log(D(\boldsymbol{x})) + p_g(\boldsymbol{x}) \log(1 - D(\boldsymbol{x})) dx$		(2)
	Show that for G fixed, the optimal discriminator $D_G^*({m x})$ is		
	$D_G^*(\boldsymbol{x}) = \frac{p_{data}(\boldsymbol{x})}{p_{data}(\boldsymbol{x}) + p_g(\boldsymbol{x})}$		(3)
		3 pts	
3.	Express this optimal discriminator $D^*_G(m{x})$ using a sigmoid σ , a logarithm an	d p_{data} ,	p_g .
		1 pts	

Undirected Deep Models & Generative models (30

4.	Using that $\sigma'(\cdot)=\sigma(\cdot)(1-\sigma(\cdot))$, show that if $D^*_G(\boldsymbol{x})\neq 1$, then
	$\left\ \frac{\nabla_{\boldsymbol{x}} \log(D_G^*(\boldsymbol{x}))}{1 - D_G^*(\boldsymbol{x})} \right\ ^2 = \ \nabla_{\boldsymbol{x}} \log(p_{data}(\boldsymbol{x})) - \nabla_{\boldsymbol{x}} \log(p_g(\boldsymbol{x}))\ ^2. $ (4)
	3 pts
	Remark. Note that as the generator depends on some parameters θ , so does the quantity $J(\theta) = \int_{\boldsymbol{x}} \ \nabla_{\boldsymbol{x}} \log(p_{\text{data}}(\boldsymbol{x})) - \nabla_{\boldsymbol{x}} \log(p_g(\boldsymbol{x}))\ ^2 p_{\text{data}}(\boldsymbol{x}) d\boldsymbol{x}$. Now we assume that, although we don't have access to p_{data} in practice, we can compute $\nabla_{\theta} J(\theta)$ using some trick. (Optimizing this quantity is called <i>score-matching</i> .)
5.	Consider the two quantities
	$q_1(\theta) = \mathbb{E}_{x \sim p_{\text{data}}}(D_G^*(\boldsymbol{x})) \text{ and } q_2(\theta) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} \left(\ \frac{\nabla_{\boldsymbol{x}} \log(D_G^*(\boldsymbol{x}))}{1 - D_G^*(\boldsymbol{x})} \ ^2 \right). $ (5)
	For each of them, explain if and why, in practice, we can or cannot compute their gradients with respect to θ .
	2 pts

4.2 Restricted Boltzmann Machines

Suppose that we are given a restricted Bolztmann machine (RBM) with energy function

$$E(\boldsymbol{x}, \boldsymbol{z}) = -\boldsymbol{z}^T \boldsymbol{W} \boldsymbol{x} - \boldsymbol{c}^T \boldsymbol{x} - \boldsymbol{b}^T \boldsymbol{z},$$

where ${\boldsymbol x}$ is the input and ${\boldsymbol z}$ the hidden variable. Assume that both ${\boldsymbol x}$ and ${\boldsymbol z}$ are binary vectors, i.e. ${\boldsymbol x},{\boldsymbol z}\in\{0,1\}$. The joint probability density is given by $p({\boldsymbol x},{\boldsymbol z})=\frac{e^{-E({\boldsymbol x},{\boldsymbol z})}}{Z}$.

1.	Express $p(x)$ in the form $Z^{-1}e^{-F(x)}$ (i.e. marginalize over z), and express non-linearity defined by $s(x) = \log(1 + \exp(x))$. We call F the free-energy.		ng the
		4 pts	
2.	The non-linear function $s(x)=\log(1+\exp(x))$ can be seen as a smooth vother non-linear function commonly used in neural networks. Which function		
		1 pts	
3.	Show that $ abla_{oldsymbol{W}}E(oldsymbol{x},oldsymbol{z}) = -oldsymbol{z}oldsymbol{x}^T.$	2 pts	

4. Show that $\mathbb{E}_{m{z}}(abla_{m{W}})$ ing on $m{x}$, and using		s a vector that you will define, dep	pend-	
4.3 Deep Belief	Networks			
	Suppose that we are given a deep belief network (DBN), consisting of a restricted Bolztmann machine (RBM) with energy function			
$E(oldsymbol{z}^{(2}$	$(z^{(3)}) = -z^{(2)T} W^{(3)} z^{(3)} - b^{(3)}$	$m{z}^{(2)T}m{z}^{(2)} - m{b}^{(3)T}m{z}^{(3)},$		
with joint probability density given by $p(z^{(2)}, z^{(3)}) = Z^{-1}e^{-E(z^{(2)}, z^{(3)})}$, then stacked successively with two sigmoid belief networks (as in the lectures), $z^{(1)}$ on top of $z^{(2)}$, and then x on top of				
$oldsymbol{z}^{(1)}$, meaning that	$p(z_j^{(1)} = 1 \boldsymbol{z}^{(2)}) = \sigma(b_j^{(1)} + 1)$	$oldsymbol{W}_{j\cdot}^{(2)}oldsymbol{z}^{(2)})$		
and	$p(x_i = 1 \boldsymbol{z}^{(1)}) = \sigma(b_i^{(0)} + \boldsymbol{V}$	$oldsymbol{V}_{i\cdot}^{(1)}oldsymbol{z}^{(1)}).$		
Assume we only consider	binary vectors for $oldsymbol{x}$ and the $oldsymbol{z}'$	$^{(i)}$'s, i.e. with coordinates in $\{0,1\}$	}.	
	OBN) In the following expression	on, replace the \square 's by either of x ,	$oldsymbol{z}^{(1)}$,	
$oldsymbol{z}^{(2)}$ or $oldsymbol{z}^{(3)}.$	$p({m x},{m z}^{(1)},{m z}^{(2)},{m z}^{(3)})=p(\Box,\Box$	$\exists)p(\Box \Box)p(\Box \Box).$	(6)	
		1 pts		

2.	Express $p(\boldsymbol{x}, \boldsymbol{z}^{(1)}, \boldsymbol{z}^{(2)}, \boldsymbol{z}^{(3)})$ as a function of the parameters of the DBN.		
		3 pts	
3.	(Variational bound) Now assume that we are trying to approximate $p(\boldsymbol{z}^{(1)} \boldsymbol{x})$ Show that	by $q(oldsymbol{z}^($	$^{1)} oldsymbol{x}).$
	$\log(p(x)) \geqslant \sum_{\boldsymbol{z}^{(1)}} q(\boldsymbol{z}^{(1)} \boldsymbol{x}) \log \left(p(\boldsymbol{z}^{(1)}, \boldsymbol{x}) \right) - \sum_{\boldsymbol{z}^{(1)}} q(\boldsymbol{z}^{(1)} \boldsymbol{x}) \log \left(q(\boldsymbol$	$^{)} oldsymbol{x})ig).$	(7)
		3 pts	
4.	Recall that the KL-divergence between two probability distributions P and by $D_{KL}(Q P) = \sum_i Q(i) \log(\frac{Q(i)}{P(i)})$. Reformulate the previous inequality divergence.		
		1 pts	

Supplementary Sheet

Supplementary Sheet

Supplementary Sheet