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General Remarks

e Please check that you have all 26 pages of this exam.

e There are 120 points, and the exam is 120 minutes. Don’t spend too much time on
a single question! The maximum of points is not required for the best grade!

e Remove all material from your desk which is not permitted by the examination regulations.

e Write your answers directly on the exam sheets. If you need more space, make sure you
put your student-ID-number on top of each supplementary sheet.

e Immediately inform an assistant in case you are not able to take the exam under regular
conditions. Later complaints are not accepted.

e Attempts to cheat/defraud lead to immediate exclusion from the exam and can have
judicial consequences.

Please use a black or blue pen to answer the questions.

e Provide only one solution to each exercise. Cancel invalid solutions clearly.

’ \ Topic \ Max. Points | Points Achieved \ Visum ‘
1 Compositional Models and Approximation Theory 24
2 Feedforward Networks and Backpropagation 24
3 Learning, Optimization and Regularization 24
4 CNNs, RNNs, Memory and Attention 24
5 Factor Models, Autoencoders and Generative Models 24
| Total | | 120 | \ |
Grade: ...



1 Compositional Models and Approximation Theory

(24 pts)

1.1 Representation Learning

The figure below shows the activation patterns of intermediate representations learned in a deep
belief network for two different datasets consisting of faces and cars.
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(i) For both datasets, which set of activation patterns (top images or bottom images) corre-
sponds to which level of network layer? Justify your answer and distinguish between low
layers, i.e. closer to the input layer and high layers, i.e. closer to the output layer.

2 pts

1.2 Linearity

Consider the following map from R"” to R:

f@)=w'z+b 2eR" 04w ecR"0£bER (1)

and consider its linearity according to the definition provided in class (additivity + homogeneity).

(i) Is the map f(x) linear? Give a formal derivation.




1.3 Level Sets

Consider the following function from R"™ to R:

f(x) =sin(w'z+b) z€R"0£wecR",0#£bcR. (2)

(i) Is f(z) a ridge function? Explain why.

1 pts
(ii) Calculate the derivative V, f.
2 pts
(iii) Give a formal description of the level set L(1)
2 pts
1.4 Rectified Linear Units
Consider a rectified linear unit from R? to R:
f(z) = max(0, wizry + wexe +b), w; >0, we <0, bF#0. (3)

3



(i) Find the subdifferential of f at each point z € R?, i.e.
0f(x) ={v e R*| f(y) - f(z) = v (y —2) Vy € R*}.

Hint: use the property Of(x) = conv (U;. f,(x)=y(x)0fi(x)) for subdifferential of maximum
f(z) = max{fi(z)|i=1,...,n}, ie., the subdifferential of the maximum of functions is
the convex hull of the union of subdifferentials of the active functions at x.

2 pts

(i) Propose a neural network architecture with the universal approximation property. Give a
short proof sketch.

3 pts

(iii) Prove that any continuous function in [0, 1] can be uniformly approximated to arbitrary
precision by a piecewise linear function.

2 pts




1.5 True / False

Are the following statements true or false? (41 point for correct answers, -1 point for incorrect

answers, no negative total points)

(ii)

(iii)

(iv)

7 pts

Every continuous piecewise linear function from R"™ — R can be written as a signed sum
of k-hinges with £k < n + 1.

[ ] True [ ] False

Every k-hinge can be expressed as a nested combination of functions of the form f(z) =
o(w'z + b) where o denotes the absolute value function.

[ ] True [ ] False

Every k-hinge can be expressed as a nested combination of functions of the form f(z) =
o(w'x + b) where o denotes the max(z,0) function.

[ ] True [ ] False

Every function whose epigraph is a polyhedral set is convex.
[ ] True [ ] False

Every continuous piecewise linear function can be represented exactly as the output of a
linear network with two maxout units and a linear output unit.

[ ] True [ ] False

Each continuous function on a convex set always reaches its infimum on it.
[ ] True [ ] False

Each continuous function on a bounded set always reaches its supremum on it.
[ ] True [ ] False
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2.1
(i)

(iii)

Feedforward Networks and Backpropagation (24 pts)

Activation Functions
Consider the activation function

0 forz <O

flx) = { (4)

1 forz > 0.

Why is (4) generally not used for neural network training?

Now, consider a two-layer feedforward network in which the non-linear activations are

given by the sigmoid function o(z) = m. Show that there exists an equiva-
lent network, which computes exactly the same function, but with activations given by
tanh(z) = %. First derive the relation between o(z) and tanh(z) and then
show that the parameters of the two networks differ by linear transformations.

4 pts

Consider the following two-layer network
F(X) = hQ(Wg hl(W1X+b1) +b2) (5)

where hy 5(-) denotes some activation function and where x € R4, W; € R**4 b, € R".
Prove that the expressiveness of linear networks (i.e. h(-) being the identity function) does
not increase with depth.

2 pts




2.2 Elementary Logic Functions
Feedforward neural networks with linear activations (i.e. identity activation functions) have

many limitations. Most famously, they cannot learn the XOR([x1, z2]) function: XOR([0,1]) =
XOR([1,0]) = 1 and XOR([0,0]) = XOR([1,1]) = 0.

(i) Give a short proof or illustrate in the z1, z5-plane why this is not possible.

(i) Show that a non-linear two-layer neural network can in fact solve the XOR problem.
Consider the network given by f(x;Wa, by, Wy, by) = Wyh(Wix + by) + by with
h(z) = max(0, z) and

11 0
Wl - |:1 1:| ) bl = |:_1:| ) W? :?7 bQ =7

Find the corresponding weights Wy and bias b, and show that this network gives the cor-
rect output on all inputs x € {0,1}>.

2 pts




2.3 Backpropagation and Computational Graphs
Consider the schematic representation in Figure 1 of a two-layer neural network, where = denotes

the input, W denotes the weight (we ignore biases in this exercise), h; denotes the hidden
activation function and ¢ denotes the unregularized loss function.

(i) Write down the regularized loss function denoted by L for an Ly weight-decay regularizer.

1 pts

(ii) Using the figure below, first add the computational nodes corresponding to the L_2 weight-
decay regularizer. Then extend the computational graph for backpropagation, i.e. add the
nodes for each gradient that contributes to aa_zfl' including those resulting from weight-
decay regularization.

3 pts

Figure 1: Two-layer neural network

2.4 Reparametrization trick

A recurring task for posterior computations in variational inference and policy learning is com-
puting the gradient of an expectation of a smooth function f

ViEq i f(2) = Vo / 4o 2]7) £ (2)dz, (6)

where z ~ gy(z|z) is a parametric model of the true posterior py(z|x), parametrized by a neural
network. Since backpropagation cannot flow through a random node, a common technique is
to reparametrize z = gy(x, €) with an auxiliary noise variable € ~ p(¢) in order to decouple the
generative parameters ¢ from the randomness in z.

(i) How can you reparametrize a univariate gaussian variable z ~ N(u,0?) in terms of € ~
N(0,1)?



(i) Assume that there exists a transformation z = gg(z,€) that leaves the differential mass
invariant, i.e. go(z|x)dz = p(e)de.
Show that one can compute the gradient of Eq. (6) as follows:

VoE g, (z10)f (2) = Ep) Vo f(go(z, €)). (7)

2.5 True / False

Are the following statements true or false? (+1 point for correct answers, -1 point for incorrect
answers, no negative total points)

5 pts

(i) A linear perceptron can learn the function f; : {0,1}* — {0,1}, f1 = 2o A (21 V (mz1AZ3))
[ ] True [ ] False

(i) A linear perceptron can learn the function f5 : {0,1}* — {0, 1},
fo=(x1 ANx2) V (021 Ay A 3))
[ ] True [ ] False

(iii) The error surface of a deep linear network is globally convex.
[ ] True [ ] False

(iv) Several parameter configurations (i.e. weights and biases) may represent the same neural
network function.
[ ] True [ ] False

(v) The number of partial derivatives computed in one backpropagation pass is V - E for a
network of V' nodes and E edges.
[ ] True [ ] False



3 Learning, Optimization and Regularization (24 pts)

3.1 Stochastic Gradient Descent

The most common way of training Neural Networks involves some variant of Stochastic Gradient
Descent (SGD). In its most basic form, a datapoint i is sampled uniformly at random (thus
E(Vfi(x) = Vf(x)) in each iteration k = 1,2, ... and the iterates are updates as

Ty = ok — oV fi(2). (8)

Assume the function f is smooth, i.e.

V(@) = Vil < Lz =yl Va,y. (9)

Show that, given z;, and a constant step size a, = 1/(2L), SGD does not converge to a critical

point z*, i.e. that

E (o — 2*|2) > @Enwxxk)n% (10)

3.2 Risk Function Analysis

(i) We have seen in class that if R(6) is a risk function parametrized by 6 € R?, and 6* is its
global minimum, then the Taylor approximation of R around the optimal 6* is

R(0) %R(@*)+%(0—9*)TH (0 —0%), (11)

where the Hessian H := V2R p- can be diagonalized as H = QAQT, A =diag(\, ..., \a).

To simplify computations, you can assume that the Taylor approximation shown above is exact in
an e-ball around 6*, i.e. that the high-order (O(||6 —6*||*) terms can be ignored for || —6*|| < e.

Prove that H is positive semidefinite.

3 pts

10



(i) We have seen in class that applying gradient descent to the risk approximation given in
Eq. 11 yields the following update for each iteration ¢:

ot + 1) — 0" = (I— nA)(é(t) —0%), 0:=Q"0
where 77 > 0 is the learning rate. Assuming 6(0) = 0, we explicitly derived in the lecture that

0(t)=[I— (I—nA)]o" (12)

Prove that if n < L}\ then gradient descent converges to the optimal value, i.e. prove that
max; \;

lim 6(t) = 0"

t—o00

3.3 L1 Regularization

In this exercise we would like to understand the well known fact that L1 regularization induces
sparsity of the model's parameter vector.

(i) Recall the L1 regularizer of a loss function parametrized by 6 € R? is defined as

d
Q6) =16l = Y 16
i=1

Compute the gradient V,2(0) for all  with non-zero components.

11



(i) We use the Taylor approximation of the risk function R around its optimal 6* value shown
in Eq. 11. We assume that the Hessian is diagonal, i.e. H = A = diag(\1,..., Aq) where
A; > 0,Vi. This assumption holds if the data was preprocessed to remove all correlations
between the input features, which may be accomplished using PCA.

Justify why the L1 regularized risk function R(6) := R(6) + «|6]|, with a > 0 can be written
as

R 1

(iii) Prove that minimizing the approximate L1-regularized cost function 7@(0) has the following
closed-form solution

0; = sign(6}) max (]«9;"| - %,O) :

You may assume that the optimal 6 doesn't change its component-wise sign when regularizing,

~

i.e. that sign(f) = sign(6*), where sign(-) is the component-wise sign function assigning a
vector of £1 values.

(iv) We define the 'sparsity factor’ of the vector 6 as the number of zero components of this
vector. Using the previous exercise, prove that a higher regularization factor « results in an
increasing 'sparsity factor’.




3.4 Challenges of non-convex optimization

When training a deep neural network, it is commonly observed that the gradient norm increases
while the training error decreases. This behavior is illustrate in Figure 2.
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Draw a 1-D function f(z) > 0 with a unique global minimum for which the gradient norm
increases as the function decreases.

2 pts
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3.5 Stochastic Gradient Descent (SGD)

We run 3 different methods to optimize a 2-D function: (i) gradient descent, (ii) stochastic
gradient descent with a constant step size, and (iii) stochastic gradient descent with decreasing
step sizes. The following figure traces the steps of these methods during optimization.
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Figure 3: Convergence behavior of different optimization methods: we plot the level set of
each function as well as circles to show the steps taken by each optimization method.

Map each optimization method (i-iii) to its corresponding convergence plot (a-c) in the above
figure.

2 pts

3.6 Curvature challenge

Consider the two quadratic functions with different curvature shown in the figure below.

Figure 4: Level sets of two quadratic functions with different curvatures.

14



For each function we can use one of two optimizers: (i) gradient descent and (ii) Newton's

method. Considering the curvature of each function, assign each method (i-ii) to its best
optimizer (a-b).

2 pts

3.7 Sharp non-linearities

Consider the objective function shown in Figure 5 with a sharp non-linearity.

J(w,b)

Figure 5: Objective function with a sharp non-linearity.

1. What problem can arise when using an optimization procedure that follows the gradient
of this objective function?

1 pts

15



4 CNNs, RNNs, Memory and Attention (24 pts)

4.1 CNNs

(i) Ignoring potential boundary effects, are the following statements true or false? (41 point
for correct answers, -1 point for incorrect answers, no negative total points)

1. The convolution operator commutes with the translation operator.
[ ] True [ ] False

2. Applying the max-pooling operator before a translation is the same as applying the max-
pooling operator after a translation (assume stride = 1).

[ ] True [ ] False

3. The convolution operator is nonlinear.
[ ] True [ ] False

3 pts

(i) The k x k correlation operator x parameterized by w € R* x R¥ is defined as follows,

k
(.T X w)uv = Zwijxu+i,v+j
iJ

Let y = (z X w). Suppose there is a correlation operator in a neural network whose loss function
is L. Compute %. Hint: assume that you have back-propagated gradients 4.

(iii) Consider a convolutional layer with a kernel of dimension k x k with f filters and an input
tensor of dimension n x n X d.

(i) What is the dimension of the output layer if padding is zero and stride is one?

16



(iii) How many parameters are in this layer (including biases)?

4.2 Recurrent Neural Networks (RINN)

(i) Consider the problem of sequence modeling. What can a RNN do that a fully-convolutional
3-layer CNN (parameters: filter size 3x3, stride 1x1, no padding) can not do?

2 pts

(i) We want to look at back-propagation through time. We consider an RNN with teacher
forcing during training, where the ground truth of the previous step t — 1 is fed as an additional
input to compute the next hidden state h;. We define the RNN with inputs x1.77, computed
outputs y;.7 and ground-truth outputs ¥;.7.

a; = F(xy, R 1) 0)
hy = o(ay)

9r = G(hs; ¢)

Ly = H (9, yr)

T
L= ZLt
t=1

where F', G, and H are smooth vector valued functions, L is a smooth function into the reals,
o is an elementwise nonlinearity, # and ¢ are parameter vectors and the initial state hg is given.

17



Calculate g—g, the derivative of the total loss with respect to the parameters 6. The final an-

swer should only contain partial derivatives of functions with respect to their direct parameters,
meaning it should not be possible to expand them further using the chain rule.

5 pts

4.3 Memory and Attention

(i) State exactly one problem that LSTMs are meant to solve, compared to naive RNNs.
Briefly explain how it solves this problem.

(i) How many gates does a GRU cell have? Name them. Same for an LSTM cell.

1 pts

(iii) Name exactly one advantage that GRUs have over LSTMs.

18



(iv) A Neural Turing Machine (NTM) reads and writes from memory, and is said to possess a

differentiable memory. But with respect to what is it differentiable?

2 pts

19



5 Factor Models, Autoencoders & Generative Models

(24 pts)

5.1 Factor Analysis (Maximum Likelihood Estimation)

(i) Given a set of random variables Ti—{12,.n}, €ach sampled from a normal distribution

flxip,0?) = \/2276 202 with mean p and variance o2, derive the maximum likeli-

hood estimators of the mean /i and the variance 62.

4 pts

(i) The expectation of a vector z € R™ under a Gaussian distribution is given by: E(z) = p,
where p is the mean of the Gaussian distribution. The second-order moments of the
Gaussian distribution in matrix form are given by E(zz”). Show that E(xz”) = pu” + %,
where ¥ = cov(x) is the covariance matrix and is defined as:

cov(z) =E ((m —E(z))(z — E(x))T> (13)

20



5.2 Latent Variables

Given two variables = and y with joint distribution p(x,y), the expectation E(z) and variance
var(x) under the conditional distribution p(z, y) are given respectively by: E(z) = E, (E,(z|y))
and var(z) = E,(var,(z|y)) + var, (E.(z|y)).

Under a Probabilistic PCA model, the conditional distribution of the observed variable z € R?
over the latent variable z (corresponding to the principal-component subspace) is defined as:
p(x]z) = N(x|Wz + p,0%I), where the mean of x is a linear function of 2 defined with the
matrix W € R%™ and the vector 1 € R?. The prior distribution over z is given by the zero-mean
and unit-covariance gaussian distribution: p(z) = N(z|O,I). Show that for the probabilistic
PCA model:

e E(z) = E.(E,(z]2)) = p
o cov(z) = E,(covy(x]2)) + cov, (B (x]2)) = WWT + 021

5.3 Linear and Contractive Auto-Encoders

Consider an auto-encoder with input z € R”, hidden values h = f(z(z)) where z(z) = Wz,
and outputs Z = g(V'h). The activation functions are f() and g(), while the weight matrices
are given by W € R™*™ and V' € R™*".The following figure represents such auto-encoder.

21



(i) Show that a linear auto-encoder has the same objective function as PCA.

(ii) Given a training set D,,, the objective function of a contractive auto-encoder (CAE) is:

S ((eav-saven) < Al ) (1)

.’EGDn

where the regularization term is the sum of squares of all partial derivatives of the hidden
extracted features with respect to the input dimensions:

oh;(x)\”

F

@lf =3 (252 (19
ij i

Using the chain-rule and assuming that the activation-function f(z) = H% is a sigmoid,

compute the Jacobian of the hidden layer w.r.t to the input z: (%)Q

5.4 Variational Auto-Encoders

We propose to use the following generative process to model some data z € R%:
e A latent code z € R is sampled from a standard normal py(z) ~ N(0, I).

e Our deterministic generative model p(xz|z) maps the latent code z to a distribution over
the data = (p will be realized by a neural network).

Throughout the following steps we develop a likelihood-based training procedure for our model.

(i) Give exactly one benefit of modeling z as a stochastic variable.

22



(ii) We do not know z for a given x in our training data. In order to perform likelihood-based

(iii)

training, we will marginalize over z and introduce an inference mechanism q(z|x). For now
we will only assume that ¢ defines a valid conditional distribution over z.

Derive a lower bound on the data likelihood (ELBO) by showing that

p(x) > By llog p(a]2)] — D (q(z]2)l[po(2)) (16)

Give hints on what you are doing in every step.

Why can't we just apply Bayes rule and use p(z|z) as implied by our model above?

1 pts

Let's say we choose a more complex, non-Gaussian, distribution for q. Putting the question
of parametrization aside, what mathematical benefit might we loose?

1 pts

Let p be parametrized by parameters 6 and ¢ be parametrized by parameters (. By
maximizing the ELBO, we maximize the first term in (16) and minimize the KL-term.
During training you observe that you managed to minimize the KL-term to zero.

What does this imply for the gradients V and V7

23
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